Бозонный сэмплинг на 100-модовом оптическом интерферометре позволил продемонстрировать квантовое превосходство

Китайские физики собрали оптическую схему, с помощью которой продемонстрировали квантовое превосходство. В качестве задачи для демонстрации скорости работы квантового устройства они выбрали бозонный сэмплинг на 100-модовом оптическом интерферометре. По расчетам авторов, их квантовый вычислитель справляется с этой задачей в 100 триллионов раз быстрее, чем обычный суперкомпьютер. Работа опубликована в журнале Science. С начала развития квантовых технологий вопрос превосходства квантового компьютера над классическим не только остается открытым, но и постоянно меняется его формулировка. Ученые сосредоточили свое внимание на определенных задачах, в которых квантовые вычислители оказываются эффективнее классических. Почти год назад отдел квантового искусственного интеллекта компании Google впервые заявил о том, что их сверхпроводниковый 53-кубитный процессор Sycamore смог превзойти классический суперкомпьютер в задаче о генерации случайных числовых строк. Из-за вероятностной природы кубитов число возможных вариантов таких строк оказывается очень большим — 253, поэтому для классического компьютера решение такой задачи может занять тысячи лет.

Han-Sen Zhong et al. /Science, 2020

Помимо множества задач, на которых можно демонстрировать возможности квантовых вычислителей, существуют разные платформы для создания самих процессоров. Все они развиваются параллельно и каждая имеет свои достоинства и недостатки. Специалисты Google использовали сверхпроводниковые цепи для реализации. Кроме них физики занимаются разработкой квантовых процессоров на ультрахолодных атомах, ионах и фотонах.

Фотонные процессоры обычно содержат в себе интерферометр, который удобен для реализации задачи бозонного сэмплинга. В стандартном случае фотоны, которые попадают в интерферометр, взаимодействуют друг с другом, что позволяет получать разные выходные состояния с определенной вероятностью. Частота, с которой получается то или иное выходное состояние характеризует сам интерферометр, а точнее матрицу преобразования над фотонами. Бозонный сэмплинг позволяет рассчитывать перманенты матриц, что становится сложным для классических компьютеров при увеличении размерности.

Исследователи из научно-технического университета Китая под руководством Цзянь-Вэй Пана (Jian-Wei Pan) собрали оптическую схему для расчета перманентов матрицы размером 100 на 100, что оказалось непосильно для классического компьютера. Они использовали 25 нелинейных кристаллов для генерации пар запутанных фотонов, а интерферометр для бозонного сэмплинга собирали с использованием объемной оптики.

(a) схема генерации пары запутанных фотонов с помощью спонтанного параметрического рассеяния, (b) спектры всех сжатых состояний, (c) спектральное распределение пары рожденных фотонов, (d) значения чистоты каждого из 25 состояний, (e) эффективности каждого входного состояния. Han-Sen Zhong et al. /Science, 2020

Для оценки неразличимости фотонов, от которой зависит степень их взаимодействия, и проверки работы интерферометра физики начинали с простых экспериментов. На разные входы интерферометра подавали пару сжатых состояний и фиксировали их распределение на выходе. После этого интерферометр запустили в рабочем режиме с 25 состояниями на входе и за 200 секунд ученым удалось зафиксировать разные выходные состояния больше трех миллионов раз.

Авторы сравнили статистику выходных состояний разработанного интерферометра, которая с большой точностью совпала с теоретическим логнормальным распределением, с результатами случайной генерации числовых последовательностей. Оказалось, что обе статистики не идентичны и воспроизвести данные эксперимента с помощью случайной генерации не получится.

Важную и интригующую часть работы — сравнение производительности классического компьютера и фотонного квантового процессора — ученые проводили на двух разных суперкомпьютерах (TaihuLight и Fugaku). В обоих случаях квантовый вычислитель справлялся со своей задачей быстрее в 1014 раз.

Перед тем, как создать фотонный процессор с 25 фотонами, китайские ученые исследовали возможности бозонного сэмплинга на меньшем числе кубитов: они создали 10-фотонного кота Шредингера, собрали бозонный сэмплер, который превзошел первый классический компьютер, и ускорили вычисление бозонного сэмплера с помощью потерянных фотонов.

Автор: Оксана Борзенкова
Источник: https://nplus1.ru/

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!