Загадка двойного пузыря галактики “Млечный путь”: след гигантской катастрофы от взрыва черной дыры или группы галактик?

На иллюстрации: Рентгеновская карта, где чётко видны огромные пузыри, идущие вверх и вниз от диска Млечного Пути. Скорее всего, их породила сверхмассивная чёрная дыра в центре Галактики. Десятилетия астрономы спорили о том, является ли пятно на фотографиях космоса близко расположенным объектом небольшого размера, или чем-то огромным и далёким. Новая рентгеновская карта звёздного неба поддерживает второй вариант. Когда Питер Предель, астрофизик из немецкого Института внеземной физики Общества Макса Планка, впервые обратил внимание на новую карту самых горячих объектов Вселенной, он сразу же распознал на ней последствия галактической катастрофы. Ярко-жёлтое облако вздымалось на десятки тысяч световых лет в одну сторону от плоского диска Млечного Пути, а его чуть более бледный двойник отражением простирался в противоположную сторону. Структура была настолько очевидной, что её вроде бы излишне было подробно описывать в письменном виде. «Однако журнал Nature не принял бы от нас публикацию в виде одной картинки, а редактор не сказал бы что-то вроде ’Ага, вижу’, — сказал Предель. — Поэтому нам пришлось провести кое-какой анализ».

Читать далее

Предложен новый метод изучения нелинейных систем на квантовых компьютерах через их маскировку под линейные

Две команды исследователей нашли разные способы обсчёта нелинейных систем на квантовых компьютерах посредством их маскировки под линейные. Иногда компьютерам просто предсказать будущее. Простой процесс, типа течения сока растения по древесному стволу, довольно просто реализовать в несколько строк кода при помощи того, что математики называют линейными дифференциальными  уравнениями. Однако в нелинейных системах взаимодействия влияют сами на себя: воздух, обтекающий крылья самолёта, влияет на взаимодействие молекул, которое влияет на поток воздуха, и так далее. Петля обратной связи порождает хаос, при котором малое изменение начальных условий приводит к радикальному изменению поведения впоследствии, из-за чего предсказать поведение системы практически невозможно – какой бы мощный компьютер вы бы ни использовали. «В частности, поэтому сложно предсказывать погоду или изучать сложные течения жидкости», — сказал Эндрю Чайлдс, исследователь в области квантовой информации из Мэрилендского университета. «Можно было бы решать очень сложные вычислительные задачи, если бы получилось разобраться в этой нелинейной динамике».

Читать далее

Загадка асимметрии между материей и антиматерией: разделение частиц и нестабильность свободных нейтронов

Чем меньшие масштабы мы изучаем, тем более фундаментальные знания о природе нам открываются. Если бы мы могли понять и описать самые мелкие из существующих объектов, мы могли бы построить на этой основе понимание крупных. Однако мы не знаем, существует ли предел минимизации пространства. В нашей Вселенной существуют правила, нарушения которых мы ещё ни разу не наблюдали. Мы ожидаем, что некоторые из них никогда не нарушались. Ничто не может двигаться быстрее света. При взаимодействии двух квантов энергия всегда сохраняется. Нельзя создать или уничтожить импульс и угловой момент. И так далее. Но некоторые из этих правил, хотя мы этого и не видели, в какой-то момент прошлого должны были нарушиться. Одно из них – симметрия материи и антиматерии. Каждое взаимодействие, в котором рождаются или уничтожаются частицы материи, уничтожает или порождает равное количество их двойников из мира антиматерии – античастицы. Учитывая, что наша Вселенная почти полностью состоит из материи, и почти не содержит антиматерии (нет никаких звёзд, галактик или стабильных космических структур, состоящих из антиматерии), эта симметрия, очевидно, была нарушена в прошлом. Однако как именно это произошло, остаётся тайной.

Читать далее

По неизвестным причинам вселенная расширяется быстрее, чем мы думали: новые сверхточные измерения

Вселенная, судя по всему, расширяется быстрее, чем должна. И никто не знает, почему — а новые сверхточные измерения расстояний только усугубили эту проблему. 3 декабря у человечества вдруг оказалась на руках информация, которую мы хотели получить с незапамятных времён: точное расстояние до звёзд. «Вводите название звезды или её местоположение, и через секунду получаете ответ», — сказал Бэрри Мэдор, космолог из Чикагского университета и Обсерваторий Карнеги, во время видеозвонка. «В общем…» – он умолк. «Мы просто завалены этими данными», — сказала Венди Фридман, космолог из тех же университетов, жена и коллега Мэдора. «Невозможно преувеличить мой восторг по этому поводу», — сказал по телефону Адам Рисс из университета Джонса Хопкинса, получивший в 2011 году нобелевскую премию за участие в открытии тёмной энергии. «Давайте я переключусь на видео, чтобы показать вам, что меня так восхитило?» Мы перешли в Zoom, чтобы он смог поделиться своим экраном, где расположились красивые графики, описывающие новые данные по местоположениям звёзд.

Читать далее

Действительно ли темная энергия может считаться вселенской постоянной: комментарии профессионала

В отдалённом будущем Вселенную могут ожидать различные варианты судеб, но если тёмная энергия и правда постоянная – а об этом свидетельствуют все данные – то её развитие продолжит идти по красной кривой. Эта кривая приведёт Вселенную к варианту тепловой смерти. Однако тёмная энергия не обязательно должна быть космологической постоянной. Одна из самых загадочных составляющих Вселенной – тёмная энергия. Честно говоря, её вообще не должно было быть. Раньше мы довольно логично предполагали, что Вселенная сбалансирована, и что её расширению противодействуют силы гравитации, действующие на всё, что в ней есть. Если гравитация выиграет, Вселенная снова сколлапсирует. Если выиграет расширение, всё разлетится в небытие. Однако сделанные после 1990 года наблюдения говорят о том, что расширение не просто выигрывает – удалённые галактики удаляются от нас со всё возрастающей скоростью. Однако можно ли назвать это новой идеей, или же это просто воскрешение того, что Эйнштейн назвал когда-то своей величайшей ошибкой: космологической постоянной ? Такой вопрос задаёт наш читатель: Космологическая постоянная Эйнштейна и тёмная энергия – это одно и то же?

Читать далее

Получены новые косвенные данные о характере взаимодействия черной дыры с внешним полем

Фото: Andy Rogers / flickr.com. Ученые пронаблюдали взаимодействие аналоговой черной дыры с внешним полем. Моделью дыры послужил вихрь, возникающий при сливе воды из резервуара. Чтобы вызвать изменения в динамике вихря, физики создавали поверхностные волны. Статья  опубликована в журнале Physical Review Letters. Черные дыры — объекты, которые пока остаются недосягаемыми для прямого изучения. В 1981 году физик Уильям Унру предложил исследовать их с помощью моделей, которые называют аналоговыми моделями гравитации. Аналоговые модели основаны на сходствах между разными системами. В случае черных дыр заменой выступают, например, завихрения в жидкостях. Волны звука и других колебаний вокруг завихрений ведут себя подобно световым и гравитационным волнам вблизи черной дыры. Поняв, по каким законам работает аналоговая модель, можно сделать предположения о свойствах настоящих астрофизических объектов. Именно предположения: мы слишком мало знаем о черных дырах, чтобы утверждать, что водяной вихрь их имитирует правдоподобно.

Читать далее

Получены новые удивительные данные о бурном прошлом и непрерывном развитии в будущем для нашей галактики

За последние два года астрономы переписали историю нашей Галактики.  Представители койсанских народов из Чёрной Африки, наблюдая за извилистой полосой из звёзд и пыли, разделяющей ночное небо, видели в ней угли костра. Полинезийские моряки видели в небе акулу, пожирающую облака. Древние греки видели поток молока, и называли эту дорожку «млечной» – galaxias – откуда в последствии и взялся термин “галактика“.  В XX веке астрономы обнаружили, что наша серебристая река – это всего лишь часть огромного острова из звёзд, после чего они написали собственную историю происхождения Галактики [когда стало понятно, что Млечный Путь – не единственная галактика, слово «Галактика» с большой буквы оставили как ещё одно имя собственное для Млечного Пути / прим. пер.]. В кратком изложении, Млечный Путь появился около 14 млрд лет назад в результате слияния огромных облаков газа и пыли под воздействием гравитации. Со временем появились две характерные структуры – сначала огромное сферическое «гало», а потом – плотный яркий диск. Прошли миллиарды лет, и внутри диска появилась наша собственная Солнечная система.

Читать далее

Загадка мультивселенной или откуда взять массу и энергию для создания вселенной с заданными физическими свойствами

В мультивселенной могут появиться вселенные множества возможных типов. Некоторые из них подходят для жизни, как наша, а некоторые, возможно, и нет. В контексте расширяющейся вселенной существование мультивселенной неизбежно, однако понять её с точки зрения энергии довольно сложно. Несмотря на все наши знания, касающиеся Большого взрыва, одной из величайших научных загадок остаётся вопрос появления Вселенной именно с такими свойствами, какие мы у неё наблюдаем. Нам понятно, как наша современная Вселенная развилась из более горячего, плотного и однородного состояния. Нам понятно, как это состояние возникло из более раннего периода космической инфляции. Но если зайти назад во времени достаточно далеко, в какой-то момент мы потеряем возможность измерять существовавшие тогда свойства или находить какие-либо следы ранних процессов. У нас остаются только уравнения и предположения. И одно из предсказаний, появившееся на основе теоретического изучения тех самых ранних времён – то, что наша Вселенная представляет собой лишь одну из множества вселенных, составляющих в совокупности единую мультивселенную. Но откуда возьмутся масса и энергия для мультивселенной? Именно об этом спрашивает читатель:

Читать далее

Зачем нам нужно точное решение математической задачи “О козе на привязи”?

Математики с давних времён пытались решить задачу о пасущейся козе, привязанной к изгороди. Но до настоящего времени они могли предложить только приблизительные решения. Вот вам простая на первый взгляд задачка. Представьте себе изгородь в форме окружности, с точно известной площадью пастбища, заключённого внутри. Внутрь вы помещаете козу, и привязываете её верёвкой к изгороди. Какой длины верёвка вам понадобится, чтобы у козы был доступ ровно к половине этой площади? Похоже на задание по геометрии для старших классов – однако профессиональные математики и любители думали над ней в разных формулировках более 270 лет. Некоторые варианты этой задачи были успешно решены, однако загадка про козу внутри круга до сих пор не давала нам ничего кроме размытых и неполных ответов. По сей день «никто не знал точного ответа на базовый вопрос», — сказал Марк Мейерсон, математик из академии военно-морского флота США. «Решение всегда было приблизительным». Однако в 2020-м году немецкий математик Инго Уллиш, наконец, достиг прогресса. Он нашёл, как считается, первое точное решение этой задачи – хотя и выглядит оно достаточно громоздко и непонятно.

Читать далее