Интересный проект NASA/DOE ускользнул от нашего внимания при подготовке предыдущих трех частей обзора космических реакторов. В тоже время – это максимально легкий и простой вариант ядерного реактора, призванный заменить плутониевые РИТЭГи в дальних космических миссиях и энергоснабжении небольших баз астронавтов, во всяком случае по замыслу создателей. Проект интересен тем, что здесь отброшены многие условности в облике, которые довлеют в разных бумажных реакторах, а невысокий уровень сложности позволяет сделать конструкцию такой же простой, как у РИТЭГов, что, на самом деле сможет привести этот проект к успеху. Простая конструкция и правильная идеология позволяют проходить стадии разработки с очень высокой скоростью, не характерной для ковыряющихся десятилетиями проектов космических ядерных реакторов.
Архив за день: 02.09.2022
Космические ядерные реакторы. Часть 3.
Мы уже рассказывали про реакторы, которые летали в космос – всего их чуть больше 30 штук. Рассказывал и про радиоизотопные термоэлектрические генераторы на Pu238. Но в разделе “космические реакторы” есть еще одна интересная глава (пока, правда, теоретическая) – а какие есть варианты для снабжения электроэнергией ядерного происхождения космических колоний? Причем, речь пойдет про поселения, расположенные на поверхности небесных тел (практически, речь пока может идти про Луну или Марс, хотя циклеры – тоже интересный объект). Вслед за определением местоположения для междупланетной АЭС, необходимо хоть как-то очертить ее параметры. Хотя периодически кое-кто заводит речь даже о миллионе человек на Марсе, думаю, не слишком консервативной будет оценка, что колонии скорее всего будут представлять собой небольшие аванпосты с не более, чем 10 человеками на борту и потреблением электроэнергии не выше первых сотен киловатт.
Космические ядерные реакторы. Часть 2.
Вершиной 20 летних исследовательских и конструкторских усилий по созданию космических энергоустановок на базе ядерных реакторов в СССР стал полетевшая в 1988 году двойка спутников «Плазма-А». Эти установки базировались на отлаженной на земле технологии термоэмиссионного преобразования энергии (более 80 испытательных сборок провели в реакторах от 100 до 16000 часов). Вложенные усилия, масштаб работ и красота идеи оказались настолько мощными, что последующие 20 лет в статьях профильных организаций, проектировавших и планировавших КА с ЯЭУ вы не найдете ничего, кроме развития идей реакторов с термоэмиссионными преобразователями. 20 лет разговоров про светлое ядерно-космическое будущее оборвались в октябре 2009 года, когда финансирование получили не многочисленные проекты развития «Плазма-А», а «Транспортно-энергетический модуль» с турбомашинным преобразованием.
Космические ядерные реакторы. Часть 1.
История развития космической ядерной энергетики необычна и нестандартна на фоне других направлений развития ядерных технологий. С самого первого дня космической эры ядерная энергия рассматривалась, как безальтернативный и однозначный вариант для долговременных и энергоемких космических операций: лунных баз, межпланетных полетов, гигантских геостационарных платформ для связи, как единственный источник энергии в дальнем космосе. В силу абсолютной убежденности в том, что все это будет реализовано еще в 20 веке, в США и СССР стартовали обширные программы разработки ядерных энергоустановок (ЯЭУ) для обеспечения энергией космических аппаратов. Однако, несмотря на десятилетия усилий, практический результат разработок весьма ограничен – один полет опытной установки в США, несколько опытных в СССР и, единственная в своем роде, серия 30+ запусков космических радаров УС-А, с электропитанием от ЯЭУ “БЭС-6 Бук”.