Математическое моделирование технических систем: от простого к сложному

Модель в широком смысле – это любой образ, аналог мысленный или установленный изображение, описание, схема, чертеж, карта и т.п. какого либо объема, процесса или явления, используемый в качестве его заменителя или представителя. Сам объект, процесс или явление называется оригиналом данной модели. Моделирование – это исследование какого либо объекта или системы объектов путем построения и изучения их моделей. Это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов. На идее моделирования базируется любой метод научного исследования, при этом, в теоретических методах используются различного рода знаковые, абстрактные модели, в экспериментальных – предметные модели. Смотрите, например, наши презентации по математическому моделированию физических систем и производственных процессов.

При исследовании сложное реальное явление заменяется некоторой упрощенной копией или схемой, иногда такая копия служит лишь только для того чтобы запомнить и при следующей встрече узнать нужное явление. Иногда построенная схема отражает какие – то существенные черты, позволяет разобраться в механизме явления, дает возможность предсказать его изменение. Одному и тому же явлению могут соответствовать разные модели.

Задача исследователя – предсказывать характер явления и ход процесса. Иногда, бывает, что объект доступен, но эксперименты с ним дорогостоящи или привести к серьезным экологическим последствиям. Знания о таких процессах получают с помощью моделей.

Важный момент – сам характер науки предполагает изучение не одного конкретного явления, а широкого класса родственных явлений. Предполагает необходимость формулировки каких – то общих категорических утверждений, которые называются законами. Естественно, что при такой формулировке многими подробностями пренебрегают. Чтобы более четко выявить закономерность сознательно идут на огрубление, идеализацию, схематичность, то есть изучают не само явление, а более или менее точную ее копию или модель. Все законы- это законы о моделях, а поэтому нет ничего удивительного в том, что с течением времени некоторые научные теории признаются непригодными. Это не приводит к краху науки, поскольку одна модель заменилась другой более современной.

Особую роль в науке играют математические модели, строительный материал и инструменты этих моделей – математические понятия. Они накапливались и совершенствовались в течении тысячелетий. Современная математика дает исключительно мощные и универсальные средства исследования. Практически каждое понятие в математике, каждый математический объект, начиная от понятия числа, является математической моделью.

При построении математической модели, изучаемого объекта или явления выделяют те его особенности, черты и детали, которые с одной стороны содержат более или менее полную информацию об объекте, а с другой допускают математическую формализацию. Математическая формализация означает, что особенностям и деталям объекта можно поставить в соответствие подходящие адекватные математические понятия: числа, функции, матрицы и так далее. Тогда связи и отношения, обнаруженные и предполагаемые в изучаемом объекте между отдельными его деталями и составными частями можно записать с помощью математических отношений: равенств, неравенств, уравнений. В результате получается математическое описание изучаемого процесса или явление, то есть его математическая модель.

Изучение математической модели всегда связанно с некоторыми правилами действия над изучаемыми объектами. Эти правила отражают связи между причинами и следствиями.

Построение математической модели – это центральный этап исследования или проектирования любой системы. От качества модели зависит весь последующий анализ объекта. Построение модели – это процедура не формальная. Сильно зависит от исследователя, его опыта и вкуса, всегда опирается на определенный опытный материал. Модель должна быть достаточно точной, адекватной и должна быть удобна для использования.

Классификация математических моделей.

Математические модели могут быть детерминированными и стохастическими.

Детерминированные модели – это модели, в которых установлено взаимно-однозначное соответствие между переменными описывающими объект или явления.

Такой подход основан на знании механизма функционирования объектов. Часто моделируемый объект сложен и расшифровка его механизма может оказаться очень трудоемкой и длинной во времени. В этом случае поступают следующим образом: на оригинале проводят эксперименты, обрабатывают полученные результаты и, не вникая в механизм и теорию моделируемого объекта с помощью методов математической статистики и теории вероятности, устанавливают связи между переменными, описывающими объект. В этом случае получают стохастическую модель. В стохастической модели связь между переменными носит случайный характер, иногда это бывает принципиально. Воздействие огромного количества факторов, их сочетание приводит к случайному набору переменных описывающих объект или явление. По характеру режимов модель бывают статистическими и динамическими.

Статистическая модель включает описание связей между основными переменными моделируемого объекта в установившемся режиме без учета изменения параметров во времени.

В динамической модели описываются связи между основными переменными моделируемого объекта при переходе от одного режима к другому.

Модели бывают дискретными и непрерывными, а также смешанного типа. В непрерывных переменные принимают значения из некоторого промежутка, в дискретных переменные принимают изолированные значения.

Линейные модели – все функции и отношения, описывающие модель линейно зависят от переменных и не линейные в противном случае.

Также смотрите наши презентации по математическому моделированию физических систем и производственных процессов.

Требования, предъявляемые к моделям.

  1. Универсальность – характеризует полноту отображения моделью изучаемых свойств реального объекта.
    1. Адекватность – способность отражать нужные свойства объекта с погрешностью не выше заданной.
    2. Точность – оценивается степенью совпадения значений характеристик реального объекта и значения этих характеристик полученных с помощью моделей.
    3. Экономичность – определяется затратами ресурсов ЭВМ памяти и времени на ее реализацию и эксплуатацию.

Основные этапы моделирования.

  1. Постановка задачи.

Определение цели анализа и пути ее достижения и выработки общего подхода к исследуемой проблеме. На этом этапе требуется глубокое понимание существа поставленной задачи. Иногда, правильно поставить задачу не менее сложно чем ее решить. Постановка – процесс не формальный, общих правил нет.

  1. Изучение теоретических основ и сбор информации об объекте оригинала.

На этом этапе подбирается или разрабатывается подходящая теория. Если ее нет, устанавливаются причинно – следственные связи между переменными описывающими объект. Определяются входные и выходные данные, принимаются упрощающие предположения.

  1. Формализация.

Заключается в выборе системы условных обозначений и с их помощью записывать отношения между составляющими объекта в виде математических выражений. Устанавливается класс задач, к которым может быть отнесена полученная математическая модель объекта. Значения некоторых параметров на этом этапе еще могут быть не конкретизированы.

  1. Выбор метода решения.

На этом этапе устанавливаются окончательные параметры моделей с учетом условия функционирования объекта. Для полученной математической задачи выбирается какой- либо метод решения или разрабатывается специальный метод. При выборе метода учитываются знания пользователя, его предпочтения, а также предпочтения разработчика.

  1. Реализация модели.

Разработав алгоритм, пишется программа, которая отлаживается, тестируется и получается решение нужной задачи.

  1. Анализ полученной информации.

Сопоставляется полученное и предполагаемое решение, проводится контроль погрешности моделирования.

  1. Проверка адекватности реальному объекту.

Результаты, полученные по модели сопоставляются либо с имеющейся об объекте информацией или проводится эксперимент и его результаты сопоставляются с расчётными.

Процесс моделирования является итеративным. В случае неудовлетворительных результатов этапов 6. или 7. осуществляется возврат к одному из ранних этапов, который мог привести к разработке неудачной модели. Этот этап и все последующие уточняются и такое уточнение модели происходит до тех пор, пока не будут получены приемлемые результаты.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ВСЕОБЩАЯ КОМПЬЮТЕРИЗАЦИЯ ИЛИ ИМИТАЦИОННЫЕ МОДЕЛИ

Сейчас, когда в стране происходит чуть ли не всеобщая компьютеризация, от специалистов различных профессий приходится слышать высказывания: “Вот внедрим у себя ЭВМ, тогда все задачи сразу же будут решены”. Эта точка зрения совершенно не верна, сами по себе ЭВМ без математических моделей тех или иных процессов ничего сделать не смогут и о всеобщей компьютеризации можно лишь мечтать.

В подтверждение вышесказанного попытаемся обосновать необходимость моделирования, в том числе математического, раскроем его преимущества в познании и преобразовании человеком внешнего мира, выявим существующие недостатки и пойдем… к имитационному моделированию, т.е. моделированию с использованием ЭВМ. Но все по порядку.

Прежде всего, ответим на вопрос: что такое модель?

Модель – это материальный или мысленно представленный объект, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.

Хорошо построенная модель доступнее для исследования – нежели реальный объект. Например, недопустимы эксперименты с экономикой страны в познавательных целях, здесь без модели не обойтись.

Резюмируя сказанное можно ответить на вопрос: для чего нужны модели? Для того, чтобы

  • понять, как устроен объект (его структура, свойства, законы развития, взаимодействия с окружающим миром).
  • научиться управлять объектом (процессом) и определять наилучшие стратегии
  • прогнозировать последствия воздействия на объект.

Что положительного в любой модели? Она позволяет получить новые знания об объекте, но, к сожалению, в той или иной степени не полна.

Модель сформулированная на языке математики с использованием математических методов называется математической моделью.

Исходным пунктом ее построения обычно является некоторая задача, например экономическая. Широко распространены, как дескриптивные, так и оптимизационные математические, характеризующие различные экономические процессы и явления, например:

  • распределение ресурсов
  • рациональный раскрой
  • транспортные перевозки
  • укрупнение предприятий
  • сетевое планирование.

Каким образом происходит построение математической модели?

  • Во–первых, формулируется цель и предмет исследования.
  • Во–вторых, выделяются наиболее важные характеристики, соответствующие данной цели.
  • В–третьих, словесно описываются взаимосвязи между элементами модели.
  • Далее взаимосвязь формализуется.
  • И производится расчет по математической модели и анализ полученного решения.

Используя данный алгоритм можно решить любую оптимизационную задачу, в том числе и многокритериальную, т.е. ту в которой преследуется не одна, а несколько целей, в том числе противоречивых.

Приведем пример. Теория массового обслуживания – проблема образования очередей. Нужно уравновесить два фактора – затраты на содержание обслуживающих устройств и затраты на пребывание в очереди. Построив формальное описание модели производят расчеты, используя аналитические и вычислительные методы. Если модель хороша, то ответы найденные с ее помощью адекватны моделирующей системе, если плоха, то подлежит улучшению и замене. Критерием адекватности служит практика.

Оптимизационные модели, в том числе многокритериальные, имеют общее свойство– известна цель(или несколько целей) для достижения которой часто приходится иметь дело со сложными системами, где речь идет не столько о решении оптимизационных задач, сколько об исследовании и прогнозировании состояний в зависимости от избираемых стратегий управления. И здесь мы сталкиваемся с трудностями реализации прежнего плана. Они состоят в следующем:

  • сложная система содержит много связей между элементами
  • реальная система подвергается влиянию случайных факторов, учет их аналитическим путем невозможен
  • возможность сопоставления оригинала с моделью существует лишь в начале и после применения математического аппарата, т.к. промежуточные результаты могут не иметь аналогов в реальной системе.

В связи с перечисленными трудностями, возникающими при изучении сложных систем, практика потребовала более гибкий метод, и он появился – имитационное моделирование “Simujationmodeling”.

Обычно под имитационной моделью понимается комплекс программ для ЭВМ, описывающий функционирование отдельных блоков систем и правил взаимодействия между ними. Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на ЭВМ) и последующий статистический анализ полученных результатов. Весьма распространенным примером использования имитационных моделей является решение задачи массового обслуживания методом МОНТЕ–КАРЛО.

Таким образом, работа с имитационной системой представляет собой эксперимент, осуществляемый на ЭВМ. В чем же заключаются преимущества?

  • Большая близость к реальной системе, чем у математических моделей;
  • Блочный принцип дает возможность верифицировать каждый блок до его включения в общую систему;
  • Использование зависимостей более сложного характера, не описываемых простыми математическими соотношениями.

Перечисленные достоинства определяют недостатки

  • построить имитационную модель дольше, труднее и дороже;
  • для работы с имитационной системой необходимо наличие подходящей по классу ЭВМ;
  • взаимодействие пользователя и имитационной модели (интерфейс) должно быть не слишком сложным, удобным и хорошо известным;
  • построение имитационной модели требует более глубокого изучения реального процесса, нежели математическое моделирование.

Встает вопрос: может ли имитационное моделирование заменить методы оптимизации? Нет, но удобно дополняет их. Имитационная модель – это программа, реализующая некоторый алгоритм, для оптимизации управления которым прежде решается оптимизационная задача.

Итак, ни ЭВМ, ни математическая модель, ни алгоритм для ее исследования порознь не могут решить достаточно сложную задачу. Но вместе они представляют ту силу, которая позволяет познавать окружающий мир, управлять им в интересах человека.

Классификация моделей

Классификация с учетом фактора времени и области использования 

  • Статическая модель – это как бы одномоментный срез информации по объекту (результат одного обследования).
  • Динамическая модель-позволяет увидеть изменения объекта во времени(Карточка в поликлинике).
  • Можно классифицировать модели и по тому, к какой области знаний они принадлежат(биологические, исторические, экологические и т.п.)

Классификация по области использования 

  • Учебные-наглядные пособия, тренажеры, обучающие программы
    Опытные модели-уменьшенные копии (автомобиль в аэродинамической трубе)
  • Научно-технические-синхрофазотрон, стенд для проверки электронной аппаратуры
  • Игровые-экономические, спортивные, деловые игры
  • Имитационные-не просто отражают реальность, но имитируют ее( на мышах испытывается лекарство, в школах проводятся эксперименты и т.п. .Такой метод моделирования называется методом проб и ошибок

Классификация по способу представления Макарова Н.А.

  • Материальные модели можно назвать предметными. Они воспринимают геометрические и физические свойства оригинала и всегда имеют реальное воплощение
  • Информационные модели нельзя потрогать или увидеть. Они строятся только на информации.Информационная модель совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.
  • Вербальная модель – это информационная модель в мысленной или разговорной форме.
  • Знаковая модель – это информационная модель выраженная знаками,т.е. средствами любого формального языка.
  • Компьютерная модель – модель, реализованная средствами программной среды.

Классификация моделей, приведенная в книге “Земля Информатика” (Гейн А.Г.))

“…вот нехитрая на первый взгляд задача: сколько потребуется времени, чтобы пересечь пустыню Каракумы? Ответ,разумеется зависит от способа передвижения. Если путешествоватьна верблюдах, то потребуется один срок, другой-если ехать на автомобиле, третий – если лететь самолетом. А самое главное – для планирования путешествия требуются разные модели. Для первого случая требуемую модель можно найти в мемуарах знаменитых исследователей пустынь: ведь здесь не обойтись без информации об оазисах и верблюжьих тропах. Во втором случае незаменимая информация, содержащаяся в атласе автомобильных дорог. В третьем – можно воспользоваться расписанием самолетных рейсов.

Отличаются эти три модели – мемуары, атлас и расписание и характером предъявления информации. В первом случае модель представлена словесным описанием информации (описательная модель), во втором- как бы фотографией с натуры (натурная модель), в третьем – таблицей содержащей условные обозначения: время вылета и прилета, день недели, цена билета (так называемая знаковая модель) Впрочем это деление весьма условно- в мемуарах могут встретиться карты и схемы (элементы натурной модели), на картах имеются условные обозначения (элементы знаковой модели), в расписании приводится расшифровка условных обозначений (элементы описательной модели). Так что эта классификация моделей … на наш взгля малопродуктивна”
На мой взгляд этот фрагмент демонстрирует общий для всех книг Гейна описательный (замечательный язык и стиль изложения) и как бы, сократовский стиль обучения (Все считают что это вот так. Я совершенно согласен с вами, но если приглядеться, то …). В таких книгах достаточно сложно найти четкую систему определений ( она и не предполагается автором). В учебнике под редакцией Н.А. Макаровой демонстрируется другой подход – определения понятий четко выделены и несколько статичны.

Классификация моделей приведенная в пособии А.И.Бочкина

Способов классификации необычно много. Приведем лишь некоторые, наиболее известные основания и признаки: дискретность и непрерывность, матричные и скалярные модели, статические и динамические модели, аналитические и информационные модели, предметные и образно-знаковые модели, масштабные и немасштабные…

Каждый признак дает определенное знание о свойствах и модели, и моделируемой реальности. Признак может служить подсказкой о способе выполненного или предстоящего моделирования.

Дискретность и непрерывность Дискретность – это характерный признак именно компьютерных моделей. Ведь компьютер может находиться в конечном, хотя и очень большом количестве состояний. Поэтому даже если объект непрерывен (время), в модели он будет изменяться скачками. Можно считать непрерывность признаком моделей некомпьютерного типа.

Случайность и детерминированность. Неопределенность, случайность изначально противостоит компьютерному миру: Запущенный вновь алгоритм должен повториться и дать те же результаты. Но для имитации случайных процессов используют датчики псевдослучайных чисел. Введение случайности в детерминированные задачи приводит к мощным и интересным моделям (Вычисление площади методом случайных бросаний).

Матричность – скалярность. Наличие параметров у матричной модели говорит о ее большей сложности и, возможно, точности по сравнению со скалярной. Например, если не выделить в населении страны все возрастные группы, рассматривая его изменение как целое, получим скалярную модель ( например модель Мальтуса), если выделить, – матричную (половозрастную). Именно матричная модель позволила объяснить колебания рождаемости после войны.

Статичность динамичность. Эти свойства модели обычно предопределяются свойствами реального объекта. Здесь нет свободы выбора. Просто статическая модель может быть шагом к динамической, либо часть переменных модели может считаться пока неизменной. Например, спутник движется вокруг Земли, на его движение влияет Луна. Если считать Луну неподвижной за время оборота спутника, получим более простую модель.

Аналитические модели. Описание процессов аналитически, формулами и уравнениями. Но при попытке построить график удобнее иметь таблицы значений функции и аргументов.

Имитационные модели. Имитационные модели появились давно в виде масштабных копий кораблей, мостов и пр. появились давно, но в связи с компьютерами рассматриваются недавно. Зная как связаны элементы модели аналитически и логически, проще не решать систему неких соотношений и уравнений, а отобразить реальную систему в память компьютера, с учетом связей между элементами памяти.

Информационные модели. Информационные модели принято противополагать математическим, точнее алгоритмическим. Здесь важно соотношение объемов данные/алгоритмы. Если данных больше или они важнее имеем информационную модель, иначе – математическую.

Предметные модели. Это прежде всего детская модель – игрушка.

Образно-знаковые модели. Это прежде всего модель в уме человека: образная, если преобладают графические образы, и знаковая, если больше слов или (и) чисел. Образно-знаковые модели строятся на компьютере.

Масштабные модели. К масштабным моделям те из предметных или образных моделей, которые повторяют форму объекта (карта).

Также смотрите наши презентации по математическому моделированию физических систем и производственных процессов.