На иллюстрации: Схематическое изображение этапов миссии по сближению с межзвездным объектом. Darren Garber et al. / arXiv.org, 2021. Американские физики описали концепт космической миссии, которая позволит аппарату на солнечном парусе быстро реагировать на обнаружение межзвездных объектов, пересекающих нашу систему в радиусе 10 астрономических единиц от Солнца, и лететь к ним со скоростью свыше 6 астрономических единиц в год. Как сообщают авторы в препринте на arXiv.org, это потенциально позволит сближаться с такими телами и получать информацию о размерах, составе и происхождении объектов при суммарной продолжительности миссии менее пяти лет. Осенью 2017 года астрономы обнаружили первый в истории наблюдений макроскопический межзвездный объект, посетивший Солнечную систему — астероид Оумуамуа. Два года спустя список таких тел пополнился кометой Борисова. Изучение межзвездных объектов — в частности, их состава (в сравнении с составом тел Солнечной системы) и механизмов, которые сообщают им ускорение, — позволит лучше разобраться в устройстве и формировании нашей звездной системы и ее окрестностей.
Зависимость результирующей скорости аппарата от отношения площади паруса к массе для различных радиусов орбиты «ожидания». Darren Garber et al. / arXiv.org, 2021
Хотя на сегодняшний день надежно известно лишь о двух межзвездных телах, посетивших окрестности Солнца, некоторые модели предсказывают, что вблизи светила (на расстояниях порядка астрономических единиц) в среднем должно пролетать несколько подобных объектов каждый год.
Тем не менее, изучать их с близкого расстояния в рамках космической миссии трудно — открытие межзвездного тела и момент его максимального сближения с Солнцем разделяют, как правило, всего несколько месяцев. С учетом дополнительного времени, которое уйдет на определение траектории тела и подготовку запуска, практически невозможно успеть сблизиться с ним при помощи обычного космического аппарата.
Догнать же межзвездный объект на исходящей траектории также довольно сложно — скорости Оумуамуа и кометы Борисова составили пять и шесть с половиной астрономических единиц в год соответственно (тогда как наиболее быстрый межзвездный аппарат — «Вояджер-1» — имеет сегодня скорость порядка трех астрономических единиц в год).
Физики под руководством Вячеслава Турышева (Slava Turyshev) из Лаборатории реактивного движения NASA описали концепт космической миссии, которая позволит сближаться с межзвездными объектами с использованием солнечного паруса — устройства, которое позволяет перемещаться и маневрировать за счет давления электромагнитного излучения. Ранее подобную идею уже выдвигал инженер из MIT в рамках конкурса Продвинутых инновационных концептов от NASA, однако тогда он не представил подробные расчеты и количественные оценки возможностей миссии.
На первом этапе миссии (заблаговременно до обнаружения межзвездного объекта) космический аппарат выводится из зоны преобладающего тяготения Земли и выходит на орбиту Солнца. Затем, маневрируя при помощи солнечного паруса, корабль выходит на спиральную или круговую траекторию вблизи светила и находится там в ожидании открытия межзвездного тела — аппарату не потребуется топливо, и потому даже долгое ожидание не будет слишком затратным.
За счет близкого к Солнцу расположения (а значит высокого давления света) при обнаружении межзвездного объекта аппарат будет способен за короткое время (порядка нескольких недель) сойти с орбиты ожидания и перейти ко второму этапу миссии — направиться навстречу небесному телу.
Рассматривая различные отношения площади солнечного паруса к массе аппарата (этот параметр характеризует ускорение от давления излучения, которое растет прямо пропорционально площади и обратно пропорционально массе) и радиусы круговых орбит ожидания, авторы вычисляли скорость аппарата, с которой последний покинул бы Солнечную систему, если бы после маневра двигался только под действием излучения и тяготения со стороны Солнца. В качестве нижней границы для этой величины исследователи установили пять астрономических единиц в год — то есть, судя по двум имеющимся наблюдениям, типичную для межзвездных объектов скорость.
По результатам расчетов, для реализации необходимых скоростей будет достаточно разместить аппарат с отношением площади паруса к массе около 60 квадратных метров на килограмм на орбите радиусом порядка 0,2 астрономической единицы. При этом полную продолжительность миссии физики оценивают не более чем в пять лет, а максимальную дистанцию перехвата межзвездного тела — примерно в 10 астрономических единиц. По словам ученых, уже с учетом нынешних технологий это позволяет при необходимости оснащать аппарат десятками килограммов полезной нагрузки — например, собирая парус нужной площади (тысячи квадратных метров) из нескольких фрагментов. Долгосрочное нахождение на небольшом расстоянии от Солнца также принципиально осуществимо — так, паруса из каптона не будут плавиться на расстояниях вплоть до 0,15 астрономических единиц.
Авторы отмечают, что детали космической миссии допускают множество вариаций: так, в целях экономии легкие аппараты можно первоначально запускать вместе с другой межпланетной (или лунной) миссией, а в ходе ожидания межзвездного объекта — отслеживать с их помощью космическую погоду или проводить иные гелиофизические измерения.
Кроме того, можно одновременно использовать несколько аппаратов — так можно за один запуск обеспечить наблюдение сразу за несколькими межзвездными телами в будущем, или даже использовать корабли парами — в одном из возможных сценариев первый аппарат используется, чтобы столкнуться с небесным телом и сформировать облако из обломков, а второй — чтобы пересечь это облако, собрать материал и при помощи дальнейших маневров доставить его на Землю.
Ранее мы рассказывали о том, как аэрографитовый солнечный парус признали пригодным для межзвездных полетов и о том, как такое приспособление из графена взлетело при помощи лазера.
Автор: Николай Мартыненко
Источник: https://nplus1.ru/
Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!