На иллюстрации: Визуализация быстрого жидкосолевого реактора MCRE. Источник: Southern Nuclear. Сообщается, что Southern Company и Министерство энергетики США (DOE) недавно подписали многообещающее соглашение о проектировании, строительстве и эксплуатации экспериментального реактора на расплавленном хлориде (MCRE) – экспериментального критического жидкосолевого реактора на быстрых нейтронах. Southern возглавит совместные усилия по созданию MCRE – который, по ее словам, станет первым в мире быстрым жидкосолевым реактором, достигшим критичности. MCRE планируется построить в Национальной лаборатории Айдахо (INL). В проекте MCRE сотрудничают компании TerraPower, INL, Core Power, Orano Federal Services, Electric Power Research Institute и 3M Company. Проект осуществляется при поддержке Программы демонстрации передовых реакторов Министерства энергетики США (ADRP) в рамках пятилетнего соглашения о совместном финансировании стоимостью 170 миллионов долларов США.
Проект предоставит важнейшие эксплуатационные данные для поддержки будущего развития быстрого реактора на расплавленном хлориде (MCFR) компании TerraPower, а также информацию для проектирования, лицензирования и эксплуатации демонстрационного реактора.
Конструкция быстрого жидкосолевого реактора MCFR. источник: Terrapower
Марк Берри, вице-президент Southern Company по исследованиям и разработкам, назвал проект MCRE “революционным”.
“Продвижение ядерных технологий следующего поколения является частью комплексной стратегии Southern Company по обеспечению экологически чистой, безопасной, надежной и доступной энергии”, – сказал он, – “Наш эксперимент с жидкосолевым реактором поддержит коммерциализацию революционной технологии в сроки, соответствующие контрольным показателям изменения климата на Земле, и обеспечит достижение цели Southern Company по сведению к нулю выбросов парниковых газов к 2050 году”.
Технология MCFR компании TerraPower использует расплавленную хлоридную соль в качестве теплоносителя и топлива для реактора, что позволяет использовать так называемый “быстрый спектр нейтронов”, который, по словам компании, делает реакцию ядерного расщепления более эффективной. Данные ЖСР будут работать при более высоких температурах, чем обычные реакторы, имея более эффективную выработку электроэнергии, а также имея возможность дополнительного применения промышленного тепла и его хранения. В настоящее время разрабатывается вариант MCFR, известный как m-MSR, предназначенный для использования на плавучей АЭС.
В 2015 году Southern Company и TerraPower получили около 40 миллионов долларов США из средств Министерства энергетики США на создание интегрированной инфраструктуры, необходимой для поддержки раннего развития технологии MCFR. MCRE продолжит этот процесс в направлении коммерциализации MCFR, заявили партнеры проекта.
“Наша прошлая работа с Southern Company привела к важным экспериментальным вехам и созданию уникальных испытательных установок, необходимых для проверки технологии жидкосолевых реакторов”, – сказал президент и генеральный директор TerraPower Крис Левеск, -”Лидерство и опыт Southern Company в лицензировании и эксплуатации реакторов сыграли важную роль. Эксперимент с быстрым реактором на расплавленном хлориде продолжит эту важную работу, что приведет к успешному развитию недорогой и экологически чистой энергетики будущего”.
TerraPower также разрабатывает проект Natrium – натриевый быстрый реактор в сочетании с системой хранения энергии на основе расплавленной соли, демонстрационная установка для которой будет построена в Кеммерере в штате Вайоминг.
Traveling Wave Reactor. Источник: Terrapower
Дополнительно:
В конце прошлого года мы сообщали о старте проектирования первого в России исследовательского жидкосолевого реактора (ИЖСР) для отработки технологии дожигания долгоживущих отходов ядерной энергетики — минорных актинидов. О технических особенностях инновационной установки и перспективах проекта рассказали специалисты организации — главного конструктора ИЖСР: заместитель гендиректора НИКИЭТ им. Доллежаля по НИОКР Александр Лопаткин и главный конструктор исследовательских и изотопных реакторов Игорь Третьяков.
— Для ученых-атомщиков и специалистов НИКИЭТ в частности тематика ЖСР совершенно новая или уже есть какие-то наработки?
Александр Лопаткин: Тематика жидкосолевых реакторов развивается в мире довольно давно — с 1960-х годов, но это не реализованная в промышленном виде технология. С одной стороны, она сулит большие преимущества. Для реактора на расплаве солей не надо изготавливать и перерабатывать тепловыделяющие элементы и топливные сборки. С другой — где преимущества, там и недостатки. Использование расплавленного топлива означает, что установка лишена привычных барьеров безопасности: нет твердой матрицы, оболочки, контура циркуляции. Это требует особо пристального внимания и, возможно, новых подходов к обоснованию безопасности ЖСР. Надо понять, насколько концепция этой установки вписывается в существующую нормативную базу, разработанную для реакторов с твердым топливом. Первые же наши проработки показали, что обосновать безопасность можно, но, вероятно, нужно будет дополнить или подправить нормативную базу.
В России головной организацией по направлению жидкосолевых реакторов является НИЦ «Курчатовский институт», который с 1970-х годов занимался этой тематикой. Даже когда тематику не финансировало государство, центр находил возможность ее поддерживать. Мы в НИКИЭТ по поручению Николая Доллежаля до начала 1990-х годов занимались созданием быстрого жидкосолевого реактора. Было разработано техническое предложение и эскизный проект установки на расплавах хлоридных солей, но потом финансирование этих работ прекратилось.
— Почему сейчас эта тематика снова стала актуальной?
А. Л.: С середины 2000-х годов в России начаты работы по созданию опытно-демонстрационного центра по переработке ОЯТ на Горно-химическом комбинате. При переработке топлива образуются минорные актиниды. Что с ними делать — вопрос до сегодняшнего дня не решенный. Лет пять — семь назад в Курчатовском институте родилась идея: построить на ГХК, рядом с центром по переработке, жидкосолевой реактор-дожигатель, который будет решать проблему актинидов, когда потребуется их утилизировать в промышленном масштабе. Мощность такого ЖСР может быть от 1,5 до 2,5 ГВт. Но сначала надо отработать технологию. С этой целью в 2019 году в «Росатоме» принято решение для начала построить на ГХК исследовательский реактор небольшой мощности, а также комплекс производства и переработки топлива для него. НИКИЭТ определен главным конструктором жидкосолевой исследовательской реакторной установки. Предполагается, что научным руководителем ЖСР-проекта станет Курчатовский институт.
— Работы финансируются в рамках единого отраслевого тематического плана НИОКР?
А. Л.: Да, с 2019 года. До этого много лет мы помогали Курчатовскому институту в разработке большого ЖСР: проводили расчеты, делали конструктивные схемы. Но работа именно по заказу госкорпорации началась с прошлого года.
— Расскажите о технических характеристиках проектируемой установки.
Игорь Третьяков: Тепловая мощность исследовательского жидкосолевого реактора составит не более 10 МВт. По рекомендации Курчатовского института выбран тип соли — на основе фторидов лития и бериллия (FLiBe). В ней будут растворять тетрафториды плутония и минорных актинидов, это и будет топливом реактора. Выбран основной конструкционный материал для наиболее нагруженных элементов установки: корпуса, трубопровода, теплотехнического оборудования и т. д. Это сплав, на 80 % состоящий из никеля. Его разработали специалисты Курчатовского института и «ЦНИИчермета». Ученые исследовали коррозионные свойства взаимодействия топливной соли с этим материалом, поэтому пока выбрали его — сроки реализации технического проекта очень сжатые, надо идти по наиболее ясному пути. Но вполне возможно, что по результатам НИОКР мы рассмотрим и другие материалы, и другие соли.
ИЗ ИСТОРИИ
Единственный в мире ЖСР работал в 1960-е годы в Ок-Риджской национальной лаборатории. Реактор MSRE (Molten-Salt Reactor Experiment) обладал тепловой мощностью 7,4 МВт, топливом служил раствор фторидов урана в расплаве солей лития, бериллия и циркония. Спектр нейтронов у MSRE был тепловой. Реактор отработал пять лет, но затем его остановили из-за нерентабельности, а программу исследований закрыли.
— Где и как будут испытывать топливо для жидкосолевого реактора?
А. Л.: Коррозионные испытания без топлива, с имитаторами продуктов деления, уже начал Курчатовский институт на своих стендах. Есть в рамках проекта программа разработки облучательных ампул, которые будут заполнять топливной солью и испытывать в реакторах НИИАР и ИРМ. В 2024 году или чуть позже будет создана петлевая установка — можно сказать, фрагмент жидкосолевого реактора. Возможность создания ЖСР-петли заложена в проект сооружаемого реактора МБИР, но, в принципе, можно ее сделать и на действующих реакторах НИИАР — СМ или МИР. Или же на реакторе ИВВ‑2М в Институте реакторных материалов.
— Этот реактор будет только дожигателем или энергию он тоже будет производить?
А. Л.: Пока такой задачи перед нами научный руководитель не ставит. Вот если после исследовательского появится большой промышленный реактор, там будет, естественно, турбина, он будет давать около 1000 МВт. В исследовательских реакторах турбинная часть всегда входит в некоторый конфликт с исследовательской программой: исследования краткосрочные, а производство электроэнергии — это постоянный, стабильный процесс. Но мы будем работать в тесном контакте с ГХК, не исключено, что в процессе разработки будет решено обеспечить генерацию 2–3 МВт энергии — тогда будем добавлять турбину, хотя это, бесспорно, повысит стоимость сооружения ИЖСР.
— Каковы сроки реализации проекта?
И. Т.: В 2024 году мы должны закончить технический проект установки. К этому моменту надо знать полный состав оборудования, определить стоимость сооружения, чтобы будущий инвестор знал, во сколько обойдется строительство и эксплуатация ИЖСР с модулем переработки топлива. А ГХК в 2024 году должен получить лицензию на размещение. Это значит, что существенную часть обосновывающих НИОКР мы должны выполнить тоже до 2024 года. Таковы задачи, которые ставит перед разработчиками госкорпорация.
А. Л.: Затем в 2027 году планируется получить лицензию на строительство, а в 2031 году этот реактор пустить на Горно-химическом комбинате.
— Давайте вернемся к обоснованию безопасности. Как все-таки будете доказывать, что реактор безопасен, если снимаются три барьера безопасности из четырех?
А. Л.: Конечно, нужно очень позаботиться о радиационной безопасности. Скорее всего, реактор будет построен в подгорной части комбината, на месте бывшего машинного зала подземной АТЭЦ — место само по себе уже достаточно изолировано от внешней среды. Я подчеркиваю, что мы не снимаем барьеры безопасности. Мы заменяем одни барьеры другими. Одно из наших предложений — поместить реакторную установку в герметичную капсулу. Это еще один новый барьер безопасности.
Жидкосолевой реактор имеет отрицательный коэффициент реактивности, так что с точки зрения доказательства ядерной безопасности проблем не предвидится. Естественно, система управления реактором будет выполнена в полном соответствии с современными нормативными требованиями.
Концептуальный проект исследовательского жидкосолевого реактора
— Какие организации помимо НИКИЭТ и Курчатовского института участвуют в проекте?
А. Л.: ВНИИНМ им. Бочвара отвечает за создание топливного цикла ЖСР: изготовление, переработку топлива и обращение с радиоактивными отходами. НИИАР будет заниматься радиационным облучением и послереакторными исследованиями материалов. РФЯЦ-ВНИИТФ поможет расчетами, нейтронно-физическими экспериментами, а также намерен войти в программу по коррозионным испытаниям материалов — у них есть для этого специальная установка. В ФЭИ планируется сделать нейтронно-физический стенд для обоснования кодов безопасности. Это основные контрагенты, а вообще их очень много.
— Стратегия развития российской атомной отрасли, принятая в 2018 году, предполагает, что к концу века ядерная энергосистема станет двухкомпонентной, ее основу составят быстрые и тепловые реакторы. А какую роль будут играть ЖСР?
А. Л.: ЖСР в этой стратегии пока нет, но председатель научно-технического совета «Росатома» академик Георгий Рыкованов уже поставил задачу рассмотреть возможную роль такой установки в атомной отрасли. Жидкосолевые реакторы могут стать решением проблемы высокоактивных долгоживущих отходов на площадке переработки топлива. Со всех реакторов ВВЭР топливо перевозим на ГХК. Там его перерабатываем и делим на части: уран, плутоний возвращаем потребителям, минорные актиниды дожигаем, продукты деления размещаем на временное хранение, и далее они будут захораниваться. Таким образом, в энергетике будущего ВВЭР и быстрые реакторы станут основными поставщиками энергии. Быстрые реакторы будут также воспроизводить делящиеся материалы для себя и для ВВЭР. А жидкосолевые реакторы станут разбираться с актинидами.
Если проект исследовательского реактора окажется успешным, технология ЖСР, безусловно, получит развитие. Возможно, будет воплощена старая концепция быстрого реактора на расплавах солей. У ученых Курчатовского института и НИКИЭТ есть идея сделать бланкет на расплавах солей для термоядерного реактора. Очень важно, что госкорпорация поддержала эту технологию. Если у нас все получится, приложений может быть множество.
И. Т.: Было бы правильно завершить нашу беседу словами благодарности Курчатовскому институту, его специалистам, которые более двух десятилетий своими работами поддерживали жидкосолевую тематику, что позволяет проекту ИЖСР стартовать с достаточно проработанной базы расчетных данных.
Справка
Жидкосолевой реактор, или реактор на расплавах солей, — это установка, в которой активную зону формирует гомогенная расплавленная смесь из фторидов солей и фторида делящегося материала (урана, плутония или тория). Топливная композиция одновременно служит теплоносителем первого контура. ЖСР обладает свойством естественной безопасности: температурный и пустотный коэффициенты в нем отрицательные, что исключает тяжелые аварии типа чернобыльской. Температура в активной зоне очень высокая, порядка 700 °C, но давление в контуре отсутствует, что повышает безопасность реактора.
Алексей Ананьев, главный научный сотрудник ВНИИНМ, руководитель проекта по созданию топливного цикла ЖСР
— Топливом для реактора на расплавах солей будет тетрафторид плутония из переработанного топлива реакторов ВВЭР, растворенный в смеси фторидов лития и бериллия (соль FLiBe). В смесь также будут добавлять фториды минорных актинидов для их выжигания. Мы долго обсуждали, какую композицию выбрать: соль на основе фторидов лития, натрия и калия FLiNaK или FLiBe. У FLiNaK есть преимущество — растворимость делящихся материалов в ней выше. Но пока нет готового конструкционного материала, коррозионно-устойчивого к расплаву фторидов лития, натрия и калия. FLiBe менее активна в отношении тех материалов, которыми мы уже располагаем. Поэтому пока выбрали ее. Но FLiNaK остается в проекте как запасной вариант, потому что работы по созданию новых конструкционных материалов не прекращаются. Возможно, в процессе развития работ по проекту перейдем на эту композицию.
У жидкосолевых реакторов нет ограничений по глубине выгорания топлива, потому что отсутствуют твэлы и их оболочки. Но нужно периодически чистить топливную композицию, чтобы сохранять нейтронно-физический и реактивностный баланс. ВНИИНМ разрабатывает технологию трехстадийной экстракции «вредных» компонентов из ОЯТ ЖСР. Она будет основана на извлечении компонентов топливной соли из расплава при помощи жидкого висмута. В висмут вводится восстановитель — металлический литий. На первой стадии экстрагируем продукты коррозии, на второй — остаточный плутоний и минорные актиниды (они сгорают в реакторе, но не на 100 %), на третьей — лантаниды. Переработанное топливо возвращается в цикл.
В процессе переработки топлива будут образовываться в основном относительно короткоживущие РАО: цезий, стронций, цирконий, молибден. Период полураспада этих радионуклидов — 30–50 лет. То есть через 500 лет остаточная радиоактивность таких РАО станет ничтожной. Это разумный срок для контролируемого приповерхностного хранения, оно обойдется гораздо дешевле и будет безопаснее, чем глубинное захоронение минорных актинидов.
Источники: https://www.atomic-energy.ru/, https://strana-rosatom.ru/
Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!