Зачем нам наблюдать за черной дырой: победы и перспективы астрономических исследований

Орбитальные телескопы могут помочь нам представить черные дыры, как никогда раньше. Шеперд Доулман потребовалось почти десять лет, чтобы осуществить невозможное. Как директор Event Horizon Telescope (EHT), проекта с участием международного сообщества состоящего из более чем сотни исследователей, он годами путешествовал на чемоданах, заполненных жесткими дисками по всему миру, для координации наблюдений между радиотелескопами на четырех континентах, включая Антарктиду. 9 апреля 2019 года сотрудничество, наконец, принесло плоды их труда, и мир посмотрел на первое изображение черной дыры. Подвиг, который первопроходец-теоретик черной дыры Джеймс Бардин назвал безнадежным в 1973 году, представлял собой выдающееся достижение астрономических технологий. Но как только обработка данных была закончена, и шампанское было разлито, сотрудничество EHT в некотором смысле стало похоже на собаку, которая поймала машину. «Все удивились, что получили такой хороший снимок так быстро», — говорит Эндрю Стромингер, физик-теоретик из Гарвардского университета. «Шепард и Майкл [Джонсон, Гарвард-Смитсоновский астрофизик и координатор EHT], спрашивали меня об этом. «Что нам с этим делать? Мы сделали снимок, и что теперь?»»

Читать далее

Формирование солнечной системы: краткий рассказ о том как это было

Меня зовут Ирина, я веду телеграм-канал об астрофизике и квантовой механике «Quant». На этот раз подготовила для вас перевод статьи о процессе конфигурации Солнечной системы в то состояние, которое мы наблюдаем сейчас (а самое главное, когда это произошло!). Приятного чтения. Гипотеза о том, что Солнечная система возникла из гигантского облака газа и пыли, была впервые выдвинута во второй половине XVIII века немецким философом Иммануилом Кантом и далее развита французским математиком Пьером-Симоном де Лапласом. В настоящее время астрономы единодушны в этом вопросе. Но и не обошлось без споров. До недавнего времени считалось, что Солнечная система приобрела свои нынешние черты в результате периода турбулентности, который произошел примерно через 700 миллионов лет после ее образования. Однако некоторые из последних исследований показывают, что она сформировалась в более отдаленном прошлом, на каком-то этапе в течение первых 100 миллионов лет.

Читать далее

Загадки вселенной: знаете ли Вы причины, по которым у каждой звезды свой размер?

Даже единственная звезда, например, наше Солнце, в течение своей жизни будет сильно менять размер. Чем объяснить огромное разнообразие звёздных размеров, наблюдаемых нами сегодня? Если сравнить планету Земля с Солнцем, окажется, что необходимо поставить 109 земель одну на другую, чтобы заполнить Солнце с одной стороны до другой. Однако же существуют звёзды, по размеру гораздо меньшие, чем Земля — и гораздо большие, чем даже орбита Земли вокруг Солнца! Как это возможно, и что именно определяет размер звезды? Наш читатель задаёт вопрос на эту тему: Почему звёзды могут вырастать до разных размеров? От размеров чуть больше Юпитера до размеров, превышающих орбиту Юпитера? Вопрос этот сложнее, чем кажется, поскольку, по большей части размеры звёзд нам не видны. Даже в телескоп большая часть звёзд кажется точками света из-за невероятных расстояний от нас до них. Их различия в цвете и яркости легко увидеть, но размер — это совершенно другое дело. Объект определённого размера на определённом расстоянии будет иметь, что называется, определённый угловой диаметр: видимый размер, занимаемый им на небе.

Читать далее

Что Вы знаете о звездах Вольфа-Райе – могущественных прародителях сверхновых, нейтронных звезд и черных дыр?

К этим звездам вполне обоснованно применимы эпитеты «самые-самые». — Самые массивные, самые горячие, самые короткоживущие, обладающие самыми мощными и быстрыми звездными ветрами и самыми большими светимостями среди других звезд. Наше Солнце, желтый карлик, смотрится на их фоне, скажем прямо, непрезентабельно. Звезды Вольфа-Райе являются одними из прародителей сверхновых, нейтронных звезд и черных дыр. Эти сверхмассивные голубоватые светила, часто окруженные флуоресцирующими газовыми туманностями, крайне редки — в нашей Галактике их зафиксировано всего около 500. Одни из самых немногочисленных звезд Вселенной — звезды класса Вольфа-Райе (WR). Найти наших редких птиц на просторах космоса несложно, если знать, где искать. Звезды Вольфа-Райе (WR), как правило, обитают в областях активного звездообразования и формирования массивных звёзд. – Это области космоса, где имеется повышенная концентрация пыли и газа (в основном ионизированного Н II и молекулярного водорода).  В таких протяжённых газопылевых туманностях при возникновении гравитационной неустойчивости рождаются молодые звёздные скопления (молодые звёзды почти никогда не встречаются поодиночке).

Читать далее

Создан широкополосный недорогой источник терагерцового излучения для широкого применения

Физики из Германии разработали новый источник терагерцового излучения. Ширина спектра его импульсов превосходит аналогичный параметр самого популярного фотопроводящего излучателя из арсенида галлия на порядок. Кроме того, новый источник должен стать дешевле предыдущих — для его работы больше нет необходимости использовать высокоинтенсивный дорогой лазер. Работа ученых опубликована в журнале Nature Light: Science & Applications. Диапазон терагерцового электромагнитного излучения (3‎×1011—3×1012 Гц) располагается в своего рода «темной» области между диапазонами хорошо изученных микроволновых и инфракрасных волн. В английском этот диапазон называют терагерцовым пробелом (terahertz gap), указывая на слабое развитие технологий излучения и манипуляции волн терагерцовых частот. В отличие от соседей по спектру, генерация терагерцового излучения и сегодня остается сложным и дорогим процессом. Т-лучи (второе название терагерцовых волн) с легкостью проникают во многие материалы, и, в отличие от рентгеновских лучей, безвредны из-за отсутствия ионизирующих свойств.

Читать далее

Ведущие университеты и компании объединяются в создании искусственного интеллекта для борьбы с вирусными пандемиями

Новый консорциум ведущих ученых сможет использовать самые передовые в мире суперкомпьютеры для поиска решений проблем с вирусами. Продвинутые компьютеры уже успели победить гроссмейстеров и научились анализировать горы данных, распознавая лица и голоса. Теперь миллиардер-разработчик программного обеспечения и искусственного интеллекта объединяется с ведущими университетами и компаниями, чтобы выяснить, может ли искусственный интеллект помочь обуздать нынешние и будущие пандемии. Томас М. Зибель, основатель и исполнительный директор C3.ai, ИИ компании в Редвуд-Сити, штат Калифорния, заявил, что государственно-частный консорциум потратит 367 миллионов долларов в первые пять лет своей работы, стремясь достичь успехов, в поисках способа замедлить появление нового коронавируса, охватившего весь мир.

Читать далее

Обнаружена возможность охлаждения нанотрубок с помощью постоянного тока

На фото: Резонатор из натянутой между электродами нанотрубки (C. Urgell & W. Yang / ICFO). Физики реализовали эффективное подавление механических колебаний отдельной нанотрубки при помощи электронов — ранее подобного удавалось достичь только посредством фотонов. В подвешенной нанотрубке осталось лишь несколько квантов колебаний, то есть ее удалось охладить до квантового режима, пишут авторы в журнале Nature Physics. Нанотрубки — это химические соединения цилиндрической формы, обладающие рядом необычных свойств. Обычно говорят про углеродные нанотрубки, состоящие из шестиугольных ячеек, напоминая свернутый лист графена. Помимо углерода нанотрубки также могут состоять из нитрида бора и некоторых других элементов. Одним из научных применений нанотрубок является наномеханический резонатор — закрепленная на подложке нанотрубка, способная колебаться на определенных частотах.

Читать далее

Создан новый эластичный супергидрофобный материал с высокими механическими свойствами

Японские ученые создали прочный и эластичный супергидрофобный материал, по структуре напоминающий кожу рыбы-ежа. Микроструктурный материал из звездообразных частиц из оксида цинка, покрытых полимером, сохранял гидрофобные свойства даже после 1000 циклов трения и сгибания, а также выдержал скручивание, нанесение царапин и разрезов. Исследование опубликовано в журнале ACS Applied Materials & Interfaces. Супегидрофобные структуры (краевой угол смачивания у них больше 150 градусов) обладают особенными водоотталкивающими свойствами. В природе этот эффект, например, помогает листьям лотоса защищаться от заселения микроорганизмами, а бабочкам — не намокнуть. Чаще всего такие материалы состоят из небольших по размерам шероховатостей, структура которых легко разрушается, если ее согнуть или деформировать по-другому.

Читать далее

Обнаружена способность материи самостоятельно создавать магнитное поле в сверхпроводящем состоянии

На фото: Рассеяние рентгеновских лучей на исследуемом кристалле (S. Ran et al. / Science, 2019). Физики впервые обнаружили вещество, в котором при переходе в сверхпроводящее состояние возникает магнитное поле, при этом соединение — дителлурид урана UTe2 — не обладает магнитным порядком вне сверхпроводящей фазы, что делает его исключительным. Вещество с такими свойствами может оказаться исключительно востребованным в области квантовых компьютеров, пишут авторы в журнале Science. Сверхпроводимость — это макроскопическое квантовое явление, которое заключается в фазовом переходе некоторых веществ при низких температурах в новое состояние с нулевым электрическим сопротивлением. Существует несколько разных типов сверхпроводников. Простейшими из них являются некоторые чистые металлы, свойства которых меняются вблизи абсолютного нуля, и их поведение хорошо описывается теорией Бардина—Купера—Шриффера (БКШ).

Читать далее