Бесконечность математического мира: просто ли записать число через сумму трех кубов?

Тяжело искать ответы в бесконечном пространстве. Математика уровня старших классов может помочь вам сузить область поисков. Учитывая, что люди изучают свойства чисел тысячи лет, можно было бы решить, что нам известно всё о числе 3. Однако недавно математики обнаружили нечто новое касательно числа 3: третий способ выразить это число в виде суммы трёх кубов. Задача записи числа через сумму трёх кубов целых чисел оказывается неожиданно интересной. Легко показать, что большую часть чисел нельзя записать в виде одного куба или суммы из двух кубов, но существует гипотеза, что большую часть чисел можно записать в виде суммы из трёх кубов. Однако найти эти кубы оказывается иногда чрезвычайно сложно. К примеру, нам было известно, что число 3 можно записать в виде 13 + 13 + 13, а также в виде 43 + 43 + (-5)3, однако более 60 лет математиков интересовал вопрос, нет ли ещё одного способа сделать это. И в этом сентябре Эндрю Букер и Эндрю Сазерленд, наконец, нашли и третий способ:

Читать далее

Впервые проведено надежное квантовое неразрушающее измерение характеристик кубита

Физики из Австралии и Японии впервые провели квантовое неразрушающее измерение кубита, который состоял из одного электрона в квантовой точке. Ученые показали, что надежность такого измерения составляет более 99,6 процентов. Статья опубликована в Nature Communications. Существует множество платформ, на основе которых можно построить универсальный квантовый компьютер. Однако, у каждого подхода есть свои недостатки. Например,  сверхпроводящие кубиты имеют небольшие времена когерентности по сравнению с другими реализациями, а из холодных атомов трудно построить большой квантовый компьютер. Квантовые точки — перспективная реализация кубитов, но и они имеют множество проблем. Одна из них — качественное измерение кубитов, которое не разрушает квантовое состояние системы. В данном контексте кубитами считаются одиночные электроны в квантовых точках, а состояния 0 и 1 описываются электронным спином.

Читать далее

В погоне за нейтрино — хамелеоном среди элементарных частиц

Одной из наиболее интересных задач современной физики является определение порядка масс нейтрино. Физики из кластера передового опыта PRISMA+ в Университете Иоганна Гутенберга в Майнце (JGU) играют ведущую роль в новом исследовании, которое указывает на то, что загадка упорядочения массы нейтрино может быть окончательно решена в ближайшие несколько лет. Это произойдет благодаря совместному проведению двух новых нейтринных экспериментов, которые находятся в стадии разработки-модернизации эксперимента IceCube на Южном полюсе и подземной нейтринной обсерватории Цзянмэнь (JUNO) в Китае. Скоро они дадут физикам доступ к гораздо более чувствительным и дополняющим друг друга данным о порядке масс нейтрино. Нейтрино — хамелеоны среди элементарных частиц. Нейтрино производятся естественными источниками — например, в недрах Солнца или других астрономических объектов, — а также в огромных количествах атомными электростанциями. Однако они могут проходить сквозь обычную материю — такую как человеческое тело —практически беспрепятственно, не оставляя следов своего присутствия.

Читать далее

Предложена идеальная криптографическая технология, которую невозможно физически взломать

В непрекращающейся гонке создания и взлома цифровых кодов идея идеальной секретности парит где-то на горизонте наподобие миража. Недавняя исследовательская работа привлекла к себе как интерес, так и скептицизм, благодаря описанию того, как достичь идеальной секретности при передаче сообщений при помощи особых кремниевых чипов, генерирующих однократные ключи, которые невозможно воссоздать. Современная криптография требует, чтобы компьютерные алгоритмы выполняли математически сложные процессы, превращающие обычные данные в тарабарщину. Обычно данные становятся нечитаемыми для любого человека, у которого нет цифрового ключа, раскрывающего математику, использованную для защиты этих данных – если только у оппонента не окажется достаточно вычислительных мощностей, чтобы взломать математически сложный код без ключа. Однако в опубликованном 20 декабря 2019 года в журнале Nature Communications исследовании заявляется об изобретении «криптографии идеальной секретности», которая будет оставаться в безопасности даже когда у оппонента появится доступ к квантовым компьютерам будущего.

Читать далее

Рассмотрение случайных процессов позволило получить новый закон движения турбулентных систем

Используя случайные процессы, три математика доказали элегантный закон, лежащий в основе хаотического движения турбулентных систем. Представьте себе спокойную реку. А теперь представьте быстрый поток пенящейся воды. Какая между ними разница? Для математиков и физиков она состоит в том, что спокойная река течёт в одном направлении, а бурный поток – в нескольких направлениях сразу. Физические системы с таким бессистемным движением называют турбулентными. Из-за того, что их движение имеет одновременно столько характеристик, их очень сложно изучать математически. Сменится не одно поколение математиков до тех пор, пока исследователи научатся описывать бурную речку точными математическими выражениями. Однако новое доказательство говорит о том, что хотя некоторые турбулентные системы и кажутся непокорными, на самом деле они подчиняются одному универсальному закону. В этой работе приводится одно из самых строгих описаний турбулентности, когда-либо данных математикой.

Читать далее

Экскурсия в МФТИ: лаборатории искусственных квантовых систем, топологических квантовых явлений в сверхпроводящих системах и терагерцовой спектроскопии

Нет, эта статья не про фантазии автора, патриотические песни или популистские размышления на тему. Это рассказ о том, как оно есть на самом деле. Как в одном конкретном ВУЗе создали условия, благодаря которым работать в нём вернулись те самые “утекшие мозги”, уехавшие во всем известные времена заниматься наукой где угодно, где за это платили и где было современное оборудование. Но почему-то сейчас они приехали обратно, построили себе новые лаборатории, обучают студентов и продолжают заниматься любимым делом. Вы сразу можете подумать: “Так это, наверное, какой-то ВУЗ особенный!” Возможно, но я не знаток вузовских рейтингов, поэтому расскажу только про то, что видел сам. Итак, сегодня речь пойдёт про научные лаборатории в Московском Физико-Техническом Институте. Можно ли сделать что-то подобное в любом другом? Это вопрос к управляющим на местах. Может быть, уже и сделано, просто я был именно здесь и за всех остальных говорить не могу. Изначально занесла меня нелёгкая в МФТИ с целью сделать нечто вроде обзорной экскурсии, но быстро выяснилось, что есть тема намного интересней: научная деятельность прямо в институтских стенах. Вот про неё мы и поговорим.

Читать далее

Проект SpinLaunch: великий научно-технический секрет космической индустрии

Вакуумная центрифуга от SpinLaunch будет ускорять ракету до 8000 км/ч. Это созданное на компьютере изображение демонстрирует внутренности центрифуги. Прошлым летом таинственная космическая компания поселилась на огромном складе в солнечной промзоне, окружающей аэропорт Лонг-Бич. Солнечные зайчики от турбовинтовых двигателей скачут по стеклянным панелям здания. Через улицу вывеска “Макдоннелл Дуглас” в ретро-стиле высится над бывшей фабрикой аэрокосмического гиганта, а за углом Virgin Orbit разрабатывает ракеты для запуска в воздухе. Подходящее место для штаб-квартиры SpinLaunch, компании, вдыхающей новую жизнь в давнюю идею использования гигантских механических пращей для зашвыривания ракет на орбиту. Автор этого дерзкого плана – серийный предприниматель Джонатан Йени. Годами он управлял SpinLaunch, работая на бывшей фабрике по производству микропроцессоров в Кремниевой долине, недалеко от Google. Сегодня компания готова открыть настоящую ракетную фабрику, которая будет выпускать пусковые установки, и, если всё пойдёт хорошо, сделает первые шаги в космос.

Читать далее

Природа турбулентности сплошных сред объяснена наличием эллиптической неустойчивости

На иллюстрации: Столкновение двух кольцевых вихрей. R. McKeown et al./ Science Advances, 2020. Физики из США и Франции обнаружили, что механизм турбулентного каскада, при котором крупные вихри в потоке распадаются на более мелкие, можно объяснить развитием в потоке эллиптической неустойчивости. Такая неустойчивость возникает за счет резонанса между вращательным течением в сталкивающихся вихрях, поэтому ее и раньше связывали с развитием турбулентности. Однако впервые с помощью эксперимента и компьютерного моделирования удалось не только подтвердить эту взаимосвязь, но и детально изучить механизм турбулентного каскада, пишут ученые в Science Advances. Каждый, кто летал на самолете, сталкивался с турбулентными течениями в воздухе. Это хаотические вихревые потоки, которые возникают в газе или жидкости при его движении с достаточно большой скоростью. Аналогичные эффекты можно наблюдать в потоке воды за плывущей собакой, дыме от сигареты или океанском течении. Но несмотря на распространенность турбулентных течений, из-за своей хаотической природы это одни из самых сложных для объяснения гидродинамических явлений.

Читать далее

Удалось впервые согласовать работу искусственного и живого синапсов на большом расстоянии через интернет

Группе ученых из университетов Великобритании, Германии, Италии, и Швейцарии удалось разработать систему связи искусственных нейронов с биологическими. Связали их через интернет при помощи мемристора, причем три элемента системы разместили в разных регионах Европы. Основа работы мозга — группы нейронов, так называемые нейронные сети. Отдельные нейроны связываются друг с другом синапсами. Новые технологии дают возможность разрабатывать аналоги нейронов и соединять их искусственными синапсами. Конечно, все это на относительно примитивном уровне, но с течением времени ученым удаются все более сложные проекты. Ну а мемристор в такой искусственной сети нужен для того, чтобы увеличить эффективность передачи сигналов от одного нейрона к другому. Основной элемент искусственной сети — полупроводниковый аналог нейрона. Это микросхема из миллионов транзисторов. Чип генерировал электрические импульсы, которые сначала поступали на мемристор, а через него, по микроэлектроду на нейрон гиппокампа мыши.

Читать далее