Существует такой тип людей, для которых исследования и создание сложных и функциональных систем — высшая степень удовольствия. К такому типу можно отнести и меня. Любой целостный объект, обладающий единством всей своей структуры, материального, социального и абстрактного миров обладает системностью: человек, семья (да и любой социальный институт), биосфера, химические вещества и пр. Системность присутствует даже в неявных вещах. Очень давно, благодаря энтузиазму моего деда, я научился играть в шахматы. Вообще, шахматы — это одна из самых древних синтетических системных моделей, представленных в оболочке настольной игры. В данной статье будет произведен системный анализ шахмат, как детерминированной (предопределенной) системы, а именно: исследование структуры связанных шахматных фигур, интегративного свойства всех фигур и отдельных «изолированных» структур и уровня доминирования на доске как отдельных фигур, так и отдельного цвета (белых или черных).
Немного о системологии
Дабы не отправлять восприятие неподготовленного читателя в «нокаут», я разберу основные принципы и понятия системологии, которые будут использованы ниже.
- Где структура, там система. Третьего не дано. Один из самых главных принципов теории систем: «Если как минимум два элемента образуют некую взаимосвязь друг с другом, то таким образом порождается прообраз будущей системы». Связь — это фактор появления системности, а структура — это совокупность этих связей и элементов. Здесь важно отметить, что элементом выступает предельно-деленная сущность актуальной реальности, то есть — дальше делить этот элемент либо невозможно, либо бессмысленно.
- Неделимость элементов. Примером вышеописанного элемента в материальном мире выступает любая элементарная частица: лептон, электрон, фотон, гравитон и т.д. В мире социума — человек. Конечно, мы в силах представить человека, как органическую систему, мысленно разобрав его на органы, нервную систему и прочие его составляющие, но в категориях социального мира подобное абсурдно, ибо человек уже является структурной единицей системы. Элементы системы — это структурные единицы любой системы, которая, кстати говоря, также может состоять из множества других под-систем.
- Структурная сложность системы (под- и над-системность). Раз уж мы взяли человека, как пример многоуровневой системы, то давайте рассмотрим его сложность на относительно простой иллюстрации:
Отчетливо видно, что человеческий организм, который является системой, также содержит в себе огромное количество под-систем, которые можно детализировать до предела клеток, которые есть единицы живых структур (как элементарные частицы и пр.). Конечно, все эти системы связаны и обмениваются различными материями: импульсами и различной энергией (тепловой, кинетической, органической и пр.).
- Интегративное свойство\параметр или эмерджентность. Хорошо. Мы поняли, что между элементами есть связи, что вместо них могут выступать целые системы с системами внутри, что если сущность мы называем элементом, то навешиваем на него ярлык дальнейшей структурной неделимости. Но, самое главное свойство, которое присуще системам — это интегративное свойство, которое является суммой всей деятельности и свойств ее элементов, но не может принадлежать простому элементу. Примеры: «Книга — это в некоторой степени общее свойство всех связанных смыслом страниц, но не принадлежащее страницам по отдельности»; «Физическая сила — совокупность качеств отдельных систем человеческого организма».
Это далеко не все что изучает системология, но остальные принципы будут объясняться по ходу чтения..
Связанные фигуры
В шахматах, при построении любой стратегии необходимо включать в учет крепкую структуру фигур. Связанная фигурой является защищающей фигурой, поменяв позицию которой (возможно) нарушится структура. Тут говорить смысла нет, нужно смотреть.
![image](https://habrastorage.org/getpro/habr/post_images/0c1/ae6/fe8/0c1ae6fe8f7af7531fa9e88f610bf1de.jpg)
Стрелкой показывается текущий ход.Подсвеченная красным пешка является связанной фигурой, так как защищает пешку выше, от атакующей.
Взглянув на расстановку системно мы можем увидеть два объекта. Первый из них — это правая белая пешка, которая является обособленной и не относящейся ко второму объекту. Второй объект — система. Здесь, давайте подробнее. Внутри системы мы имеем базовую пешечную структуру черных и атакующую эту структуру -пешку белых. Рассмотрим связи в этой системе: черная пешка, подсвеченная красным защищает союзническую пешку выше (связь защиты), а белая пешка нападает на защищаемую пешку (связь нападения). Очевидно, что все шахматные фигуры выступают неделимыми элементами, имеющими различные параметры дальности атаки и хода.
Насколько сложна вся расстановка можно увидеть на диаграмме ниже.
![image](https://habrastorage.org/getpro/habr/post_images/bfa/2cb/f55/bfa2cbf55c476cde99fbd464bb64aa39.jpg)
Шахматное полотно выступает над-системой, параметр количества полей которой неограничен (не путать с шахматной доской, ибо она имеет ограниченное количество полей)
Вот еще несколько возможных расстановок, на которых вы можете потренировать системный анализ связанных фигур.
![image](https://habrastorage.org/getpro/habr/post_images/b09/d87/ae4/b09d87ae435fc2acec8a9f0b492482ac.jpg)
![image](https://habrastorage.org/getpro/habr/post_images/692/431/ba3/692431ba3bbfe4fb6888af3400b60918.jpg)
![image](https://habrastorage.org/getpro/habr/post_images/00a/fcd/fca/00afcdfca98530813d2063b952e7b3be.jpg)
Интегративные параметры
Говорить об интегративных свойствах и параметрах фигурных структур нужно при большом количестве элементов (не забывайте, что мы принимаем фигуры за предельно делимые объекты). В своих наблюдениях я вывел три интегративных параметра в шахматах: параметр охвата территории, параметр атаки и параметр связности.
Интегративный параметр охвата территории. Это суммарный количественный показатель потенциальных полей для атаки и перехода. В начале партии данные параметры обеих систем равны 8 (нацеливание пешек и коней). Важно отметить, что каждое потенциальное поле идет за 1, то есть количество нацеленных фигур на одинаковое поле не имеет значения (на иллюстрации ниже эти поля выделены зеленым). Система фигур с большим параметром охвата территории имеет большее преимущество перед другими системами.
![image](https://habrastorage.org/getpro/habr/post_images/187/ae5/2b0/187ae52b086610aefd65aabfa861b7ff.jpg)
![image](https://habrastorage.org/getpro/habr/post_images/f4f/54f/ad7/f4f54fad7ff22b9b564ab9df368a0b06.jpg)
Интегративный параметр атаки. Это модификация вышеописанного параметра. Различие только в учете уникальных атакующих фигур. В начале партии эти параметры атаки систем равны 16 (на иллюстрации ниже синим отмечены поля с коэффициентом 2; красным — 3).
![image](https://habrastorage.org/getpro/habr/post_images/082/5d2/c4a/0825d2c4a6e9b3efac0df16707c0cab5.jpg)
Интегративный параметр связности. Думаю, что из названия очевидно, что это количественный показатель связных структур. Подсчет этого параметра происходит последовательно. Допустим, имеем следующую расстановку:
![image](https://habrastorage.org/getpro/habr/post_images/54b/3fa/965/54b3fa965a694d57d04653b190605f25.jpg)
![image](https://habrastorage.org/getpro/habr/post_images/76e/e6d/25a/76ee6d25afaaf2b24cfc5b9979f7bdb2.jpg)
Стрелкой показаны связи защиты, подсчитав которые мы и получим параметр связности (в данном случае он равняется 6).
Заключение
Это не все. На самом деле для практики основ системного подхода шахматы просто идеальная модель — она умеренно абстрактна, обладает глубокой стратегией и неоднородностью элементов. Также, если вы уже неплохо продвинулись в изучении системологии и системном анализе рекомендую переключиться с шахмат на Го, которая обладает в десятки раз более глубокой стратегией чем шахматы.
Список используемой литературы
Огнев, А.О. Основы системологии: учеб. пособие / А.О. Огнев. – 2-е изд. –
Тольятти: ТГУ, 2008. – 254 с.
Автор: Михаил Плясунов
Источник: https://habr.com/
Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!