Что такое хиральность и как она связана с космическими лучами и эволюцией вселенной

Случайности могут быть неслучайными, если мы глубже изучим основные законы природы, управляющие окружающим миром. Каждый элемент и каждая молекула подчиняется определенным правилам, нарушение которых может привести к их исчезновению. Несмотря на видимый хаос, вся структура мироздания обладает высокой степенью упорядоченности. Однако, далеко не всегда удаётся понять причины такого устройства. В настоящем исследовании учёные из Стэнфордского университета (США) выдвигают гипотезу о том, что хиральность, один из фундаментальных принципов устройства мира, могла быть сформирована под длительным воздействием космических лучей. В докладе авторы детально рассматривают сущность хиральности, механизм её возможного формирования под влиянием космических лучей и пути проверки данной гипотезы.

Основа исследования

Хиральность была впервые описана французским химиком Луи Пастером (1822-1895) в далеком 1848 году. Однако сам термин появился немного позже, в 1884 году его предложил другой не менее значимый человек в науке — Уильям Томсон (лорд Кельвин).

Луи Пастер (работа художника Альберта Эдельфельта, 1885 год).

По сути своей, хиральность это отсутствие симметрии относительно правой и левой стороны чего-либо. Это явление присутствует и в химии, и в физике, и в биологии, и даже в математике. Другими словами, концепция хиральности весьма универсальна, но ее происхождение пока еще не имеет точного ответа.

При этом в биологических системах хиральность выглядит еще любопытнее — аминокислоты в белках имеют левую хиральность, а остаток сахара рибоза, входящий в молекулы ДНК и РНК, имеет правую хиральность. Эту невероятную организованность именую гомохиральностью или хиральной частотой, а присуща она всем живым организмам.

Авторы рассматриваемого нами сегодня труда считают, что прародителем этого явления являются космические лучи, которые воздействуют на планету Земля с незапамятных времен, когда и жизни то на ней не было.

Ученые отмечают, что рибонуклеиновые и дезоксирибонуклеиновые кислоты (РНК и ДНК), отвечающие за репликацию и хранение генетической информации, состоят из линейных последовательностей строительных блоков с одинаковой протяженностью, называемых нуклеотидами, расположение которых не является ни периодическим, ни случайным и содержит генетическую информацию необходимую для поддержания жизни. А хиральность нуклеотидов придает спиральную структуру нуклеиновым кислотам.

Нуклеиновые кислоты являются очень большими молекулами, и углы вращения между хиральными единицами систематически изменяются, как показано на карте Рамачандрана*, который демонстрирует, что даже гибкий биополимер сохраняет хиральность.

Карта Рамачандрана* — способ визуализации двугранных углов аминокислот полипептидной основы (ψ и φ) в белках.

Поскольку РНК и ДНК состоят из D-сахаров (правосторонние), более стабильной конформацией является правосторонняя спираль.

Изображение №1

Гомохиральность сахаров имеет важные последствия для стабильности спирали и, следовательно, для верности* или контроля ошибок генетического кода.

Верность — свойство активирующего аминокислоту фермента или полимеразы правильно заряжать тРНК или правильно размещать остаток в растущем полипептиде или полинуклеотиде.

А вот все 20 кодируемых аминокислот левосторонние. Иногда оба энантиомера одной и той же молекулы используются живыми организмами, но не в одном и том же количестве, и они выполняют разные задачи.

В то время как жизнь, основанная на ДНК/РНК, как наблюдалось до сих пор, явно выбрала одну функциональную хиральность, которую ученые именуют «live», по отдельному синхронизированному пути мог развиваться и другой вариант (ученые назвали его «evil», что есть зеркальным по отношению к live). Однако точное равновесие между этими двумя вариантами представляется маловероятным, учитывая высокую скорость репликации. Другими словами, то, что мы наблюдаем сейчас (хиральность в ДНК/РНК), может быть лишь одним из вариантов развития событий в эволюции как таковой. Тем не менее, ввиду слишком быстрой репликации, ученые считают, что именно реализованный сейчас путь развития является единственным правильным для всех биологических систем, т.е. универсальным в масштабах Вселенной.

Авторы исследования напоминают, что уже довольно давно известно, что радиация в той или иной степени влияет на развитие биологической системы, привнося некие изменения (мутации). Ученые ссылаются к работе Мёллера, который еще в 1927 году установил, что частота мутаций пропорциональна дозе облучения, большая часть которой связана с ионизацией космическими лучами.

Мюонная* компонента доминирует в потоке частиц на земле при энергиях выше 100 МэВ, составляя 85% дозы излучения от космических лучей.

Мюон — неустойчивая элементарная частица с отрицательным электрическим зарядом и спином 1⁄2. Мюоны фиксируются на Земле в космических лучах. Когда в атмосферу попадают пионы (субатомные частицы), они распадаются на мюоны буквально за пару наносекунд.

Мюоны имеют энергию, достаточную для проникновения на значительные глубины, и они, в среднем, спин-поляризованы. А ионизация спин-поляризованным излучением может быть энантиоселективной (асимметричной). Следовательно, степень мутации организмов из категорий «live» и «evil» будет разной. А учитывая, что могут быть миллиарды или даже триллионы поколений самых ранних и самых простых форм жизни, небольшая разница в частоте мутаций может легко поддерживать один из двух ранних «хиральных» путей.

Авторы указывают на весьма любопытную ремарку Пастера, сделанную им во время открытия гомохиральности:

Если основа жизни диссимметрична из-за несимметричных космических сил, действующих в ее первоисточнике, это одна из связей между жизнью на Земле и Космосом.

Данное утверждение получило дополнительное подтверждение, когда сто лет спустя были обнаружены нарушения паритета в слабом взаимодействии*.

Слабое взаимодействие — взаимодействие, отвечающее за процессы бета-распада атомных ядер, слабые распады элементарных частиц и за нарушения законов сохранения пространственной и комбинированной четности* в них.

Четность — свойство физической величины сохранять или заменять на противоположный (+1 и -1) свой знак при определенных дискретных преобразованиях.

В аспекте хиральности это выглядит так: объект проявляет физическую хиральность, когда его зеркальное отображение не существует в природе, как следствие нарушения четности в слабом взаимодействии. Результатов четности по отношению к элементарному слабому процессу, такому как распад, в природе не существует, поскольку нейтрино являются хиральными частицами.

Ранее проведенные лабораторные эксперименты показали, что можно индуцировать энантиомерный избыток аминокислот путем облучения аналогов межзвездного льда ультрафиолетовым циркулярно-поляризованным светом.

Типы поляризации света: слева — левосторонняя круговая (циркулярная); по центру — линейная; справа — неполяризованный свет.

Однако в результате возникает еще парочка дополнительных проблем. Во-первых, круговой дихроизм также зависит от длины волны, pH и молекул. Трудно понять, как одно значение круговой поляризации может привести к последовательному хиральному смещению, учитывая большой диапазон сред, в которых находятся молекулы. Во-вторых, часто предполагается, что астрономические источники обеспечивают поляризацию. Тем не менее, оптическая поляриметрия внутри галактики не обнаружила постоянного значения круговой поляризации, а наблюдаемые степени поляризации в ультрафиолетовом диапазоне, как правило, довольно малы.

Что касается молекулярной хиральности, то стоит сначала рассмотреть маленькую хиральную молекулу, которая является частью спирального полимера (изображение №1).

В начале координат есть вершина или «цель» и три различимых атома или группы с векторами положения x1, x2, x3. В этих четырех местах есть классическое электростатическое поле, связанное с точечными зарядами. При внедрении псевдоскалярной (изменяющей знак при отражении) «молекулярной хиральности» (ℳ), которая должна менять знак при отражении, первым очевидным выбором будет: ℳtripod1 х 2 · 3.

Вторая простая, полуклассическая модель имеет электрический заряд и ток, ограниченный поверхностью сферы, окружающей центральный заряд ядра, который аннулируется суммарным зарядом на сфере. Ток учитывает электромагнитную киральность с простейшим выражением ℳem = d̂ · m̂. Эти две модели подходят для небольших молекул или мономеров, которые являются составляющими естественных спиральных биополимеров.

Третья модель, предложенная в исследовании, включает в себя цилиндрический электростатический потенциал, Φ = R0( r ) + R1( r )cos(kz — mφ), где k > 0. В этом случае молекулярную хиральность ℳ можно выбрать как ℳhelix= m = +1(-1) для «live» («evil») молекулы.

А теперь попробуем разобраться чуть подробнее с космическими лучами.

Заряженные протоны космических лучей с энергиями чуть выше порога образования пионов сталкиваются с ядрами азота и кислорода в верхних слоях атмосферы, создавая π+, π.

π+ распадается в течение нескольких метров на µ+ с периодом полураспада ∼2 мкс, который в свою очередь распадается на е+.

Поскольку пионы бесспиновые, а распад слабый, спиновые направления µ+ и е+ (Ŝµ, е) не выровнены относительно направления их движения v̂, чтобы сбалансировать антипараллельные спины сопровождающих нейтрино (схема ниже).

Изображение №2

π распадается на е с преимущественно выровненными спинами, но с магнитными моментами, также не выровненными с v̂. Чтобы выразить физическую хиральность космических лучей, ученые дополнительно вводят псевдоскалярную величину «lodacity» (L, от слова «lodestone», т.е. «магнетит»). Она определяется как: Li(T) = µˆ · v̂

L будет постепенно ухудшаться, поскольку космические лучи теряют энергию из-за рассеяния электронов. Кроме того, вторичные электроны будут в основном неполяризованными, что еще больше уменьшит L космических лучей, которые облучают молекулы.

На современном уровне моря большинство космических лучей представляют собой мюоны со средним потоком ~ 160 м-2с-1. Однако, это миллионы лет назад все могло быть иначе.

Обладая вышеописанным набором данных, можно попытаться установить связь между молекулярной хиральностью и космическими лучами. Сами ученые говорят, что их основная задача это найти эффект, пропорциональный произведению LM, который будет различать «live» и «evil» молекулы, подвергающиеся воздействию одного и того же потока космических лучей. Этот эффект называется хиральное смещение.

Этот эффект должен быть выражен в виде разницы в предельной частоте мутаций. Частица высокой энергии может возбуждать электрон локально. Как правило, снятие возбуждения происходит быстро и без излучения и включает колебательные и вращательные моды. Следовательно, это «внутреннее преобразование» может вызвать локальные структурные изменения в молекуле. Космическое излучение также вызывает ионизацию, которая вносит изменения в электронную структуру биомолекул и может привести к мутациям.

Предполагается, что сами космические лучи являются пространственно однородными и изотропно распределенными по отношению к молекулам. Также считается, что их усредненный по космическим лучам магнитный момент строго антипараллелен v, хотя процессы рассеяния или внешнего магнитного поля могут вводить угол между v и µ. Это важно, потому что хиральная часть электростатического взаимодействия включает в себя силу, определяемую v · µ х ∇E, которая исчезает, если скорость не возмущена.

Молекулярная модель «tripod» (тренога) и траектория космических лучей.

Первый вариант в модели взаимодействия молекул и космических лучей использует молекулярную модель «тренога», космический луч с зарядом qe, массой Mme, субрелятивистской скоростью v и вектором прицельного расстояния относительно цели в начале координат (b). Траектория будет линейно возмущена кулоновской силой из-за заряда Q1e в точке x1.

Это вызовет возмущение скорости δv1, которое создает хиральную силу второго порядка в сочетании с электрическим полем от второго атома. Это приводит к смещению в мишени, а градиент смещения эквивалентен хиральному изменению потока частиц. Однако это изменение исчезает после того, как было выполнено усреднение по v̂. Подобное явление вполне ожидаемо, так как в модели было задействовано всего 2 атома. Чтобы получить среднюю хиральную разницу, необходимо перейти к возмущениям третьего порядка. Помимо этого, хиральное смещение исчезает, если две «ножки» молекулярной треноги имеют одинаковую длину.

Если вероятность мутации молекулы равна Р, а разница между этой вероятностью для «live» и «evil» молекул равна δP, то δlnP ~ ⍺7LMtripodq2Q3M-4(c/v)5, где α ∼ 0.0073 — постоянная тонкой структуры*.

Постоянная тонкой структуры — постоянная, описывающая силу электромагнитного взаимодействия. Далее была рассмотрена модель сферы с поверхностным зарядом и током (схема ниже).

«Evil» / «live» молекула и траектория космических лучей.

Простейший и самый большой хиральный эффект является электромагнитным и связан с сочетанием его электрических и магнитных дипольных моментов. В этом случае получится δlnP ~⍺4LMemqM-2(c/v)2. Электростатическая спиральная модель также является хиральной (схема ниже).

«Evil» молекула и «live» молекула с траекторией воздействия лучей.

Переменная k (mutability, т.е. изменчивость) представляет собой вероятность на единицу длины траектории космических лучей через молекулу, что приведет к значительной мутации. Ученые считают, что изменчивость имеет как радиальную, так и спиральную составляющую, такую ​​как электростатический потенциал. А хиральное смещение третьего порядка в таком случае включает в себя сумму слагаемых, которая содержит два спиральных фактора и один радиальный фактор.

Похоже, что исходные позитроны космических лучей, которые численно превосходят электроны, отклоняются радиально внутрь при встрече с «live» молекулой и наружу со «evil» молекулой. Это подразумевает, что взаимодействия с нуклеиновыми основаниями должны вызывать больше мутаций, чем мутации с главной цепью фосфатного сахара. Общее хиральное смещение определяется как: δlnP ~ ⍺5LMqM-3(c/v)3.

В заключение была рассмотрена электромагнитная спиральная модель, где, предположительно отдельные мономеры несут магнитные диполи, а также электрические диполи. Тогда, хоть магниты и не выстраиваются в линию, как в ферромагнетике, корреляции в ближнем соседстве может быть достаточно для электромагнитного хирального смещения.

Для более подробного ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.

Эпилог

Скелет гипотезы, покрытый всеми этими формулами и закрученными терминами, заключается в том, что в начале жизни на Земле космическое излучение повлияло на ее эволюцию. Ученые считают, что это воздействие было направлено на две зеркальные формы жизни, помогая в конечном итоге одной взять верх над другой.

Естественно, наблюдения, сделанные сейчас, не могут дать полной картины того, что происходило миллионы лет назад. Однако именно в этом и суть, поскольку в те времена мутации происходили чаще и быстрее, а сами молекулы были куда проще. Исследователи заявляют, что в таких условиях постоянное хиральное воздействие космических лучей могло на протяжении миллиардов поколений эволюции породить единственную биологическую систему, которая окружает нас сейчас.

В будущем ученые намерены проверить свою теорию, проведя практический опыт. Например, изучить, как бактерии реагируют на излучение с иной магнитной поляризацией.

Еще одной весьма важной уликой всего этого расследования стали бы органические образцы с астероидов или с Марса, по котором можно было бы увидеть, имеют ли они такое же хиральное смещение, как и образцы с Земли.

Конечно, при рассмотрении развития жизни на планете нельзя отбрасывать возможное влияние факторов, источник которых находится за ее пределами. Чему нас учит физика и химия, так это тому, что все вокруг нас так или иначе связано. Если мы не видим этой связи это не значит, что ее нет.

Автор: @Dmytro_Kikot
Источник: https://habr.com/