Вся современная вычислительная техника зиждется на весьма уникальной способности отдельных микроэлектронных элементов очень быстро и эффективно взаимодействовать друг с другом. Основным компонентом практически всех интегральных схем является транзистор — трёхконтактный микроэлектронный элемент, через который ток между двумя контактами может быть легко регулирован, вплоть до полного прекращения, посредством напряжения, подаваемого на третий контакт. Важно отметить, что электронные характеристики микроэлектронных компонентов зависят также и от температуры. Это открывает новые возможности в области микроэлектроники: управление поведением отдельных элементов путём изменения их локальной температуры. Первым шагом в этом направлении является разработка устройств, способных нагревать или охлаждать заданный микроэлектронный компонент.
Желательно, чтобы этот нагрев и охлаждение осуществлялись электронным способом, обеспечивая взаимозависимость тепловых и электрических потоков.
Экспериментальная работа в этом направлении началась в конце прошлого века, когда были созданы микроскопические (размером в доли микрона!) электронные холодильники и термометры. Эти устройства работают за счет того, что в определенных условиях поток электронов переносит не только заряд, но и тепло. Особенно интересные эффекты получаются при очень низких температурах, ниже 1 кельвина. При таких температурах наряду с металлами, полупроводниками и изоляторами можно использовать и сверхпроводники. Кроме того, в этом случае достижим новый, дискретный режим работы микроэлектронных устройств — одноэлектроника.
Исследователи из университета Пуатье (University of Poitiers) и института CNRS, Франция, разработали квантовый тепловой транзистор, позволяющий контролировать проходящий через него поток тепла точно так же, как обычные транзисторы позволяют управлять протекающим через них электрическим током. Такой тепловой транзистор может найти применение в технологиях сбора тепловой энергии, которая обычно выбрасывается в окружающую среду при работе тепловых электростанций и других энергетических систем. В настоящее время существуют методы сбора такой тепловой энергии, но они не отличаются высокой эффективностью, так как их компоненты не могут обеспечить передачу и усиление тепловой энергии так, как это может сделать новый транзистор.
“Для управления электрическим током используются диоды, транзисторы, усилители и другие компоненты, объединяемые в сложные электронные схемы” – рассказывает Карл Жульен (Karl Joulain), ведущий исследователь, – “Теперь мы можем сделать нечто подобное и с тепловыми потоками. На базе новых тепловых элементов мы можем создать тепловые логические элементы, которые позволят управлять, включать и отключать, усиливать и модулировать потоки тепла с целью высокоэффективного сбора вторичного тепла, которое в большинстве случаев теряется безвозвратно”.
Следует отметить, что новый транзистор является далеко не первым устройством для управления потоком тепла, но он первый в своем роде, в структуре которого были использованы квантовые компоненты. Другие тепловые приборы, диоды и транзисторы, обычно изготавливались на базе макро- и метаматериалов на основе сплавов металлов, производство которых является весьма энергоемким и дорогостоящим.
С точки зрения функциональной структуры квантовый тепловой транзистор состоит из трех систем, способных находиться в двух стабильных состояниях. Другими словами, текущее состояние этих трех систем определяет включенное или выключенное состояние транзистора. А с физической точки зрения этим состояниям соответствуют состояния квантовых систем, проявляющиеся в виде направления вращения их компонентов. Каждая из трех систем может в какой-то степени контролировать проходящий поток тепла, а их синхронная работа позволяет управлять потоком тепла, текущего через весь транзистор.
Пока еще теоретически исследователи показали, что при помощи нового теплового транзистора можно не только разрешать и прерывать движение теплового потока. Комбинируя различные состояния трех систем транзистора, можно добиться даже усиления теплового потока или его модуляции сигналом, подаваемым извне. В будущем такие транзисторы могут стать основой сложных схем, изготовленных из квантовых объектов, по проводникам которых будут циркулировать потоки тепловой энергии. А собственно квантовые объекты могут представлять собой металлические наночастицы с включенными в них квантовыми точками.
“В наших дальнейших планах стоят исследования, целью которых является дальнейшая оптимизации структуры теплового устройства” – рассказывает Карл Жульен, – “И, естественно, большое внимание мы уделим поиску областей практического применения для разработанного нами транзистора и других сопутствующих вещей”
Также стало известно, что финские и итальянские физики научились регулировать мощность микроскопического электронного холодильника, в котором постоянный ток переносит также и тепло. Это большой шаг вперед в одноэлектронике.
На днях в журнале Physical Review Letters появилась их статья. Авторы этой работы приделали «регулятор мощности» к электронному холодильнику и получили таким образом совершенно новое термоэлектронное устройство — тепловой транзистор.
Как и в обычном транзисторе, в нём между двумя «ножками» тоже течет ток, но в этом случае он еще сопровождается и направленной передачей тепла. Авторы новой работы научились контролировать этот поток тепла, подсоединив к холодильнику еще один контакт и подавая на него напряжение. Тепловой поток при этом изменялся примерно в три раза. Полученный результат можно считать большим шагом вперед: ведь раньше поток тепла в такого типа устройствах вообще не умели изменять.
Вероятно, следующим шагом будет создание более совершенных тепловых транзисторов, способных не только уменьшать, но и при необходимости включать и выключать тепловой поток. Кроме того, в описанной работе использовался холодильник на постоянном токе, но, возможно, аналогичную схему можно будет применить и для одноэлектронного холодильника, работающего на переменном токе (а фактически, на одном-двух электронах, прыгающих с металла на сверхпроводник и обратно. После этого можно уже думать и о создании сложных микросхем, в которых будут взаимосвязанным образом циркулировать как электрический заряд, так и тепло.