Новый источник чистой энергии с огромным потенциалом: осмотические электростанции

Группа ученых из Лаборатории нанобиологии Политехнической школы Лозанны совершила прорывное открытие в области чистой энергии, разработав осмотический источник энергии. В основе этой технологии лежит естественный феномен осмоса: полупроницаемая мембрана толщиной всего в три атома разделяет две жидкости с различной концентрацией солей. Ионы соли, проходя через мембрану, вызывают разность потенциалов, которая может быть преобразована в электричество. Ключевой инновацией является использование уникальной мембраны из дисульфида молибдена с нанопорами, позволяющей контролировать поток ионов. Результаты исследования опубликованы в авторитетном журнале Nature. Данное открытие открывает новые перспективы для получения чистой энергии из возобновляемых источников, таких как морская вода.

Стоимость чистой энергетики сократится на 59%

Согласно новому отчету Международного агентства возобновляемой энергетики (IRENA), средняя стоимость ветряной и солнечной энергии сократится на 26-59%. Однако чтобы добиться таких показателей, понадобится ввести новые правила регулирования.

Авторы отчета отмечают, что технологические инновации, рост конкуренции и экономия за счет роста производства приведут к повсеместному удешевлению возобновляемых источников энергии. Траты на солнечные установки на фотоэлектрических элементах сократятся на 59%, а на концентрированные солнечные установки — на 43%. Прибрежные ветрогенераторы будут обходиться на 35% дешевле, а обычные — на 26%.

Согласно отчету IRENA, стоимость электричества от солнечных источников составит от 5 до 6 центов за кВт/ч. Средняя цена на солнечную энергию от коммунальных предприятий в США уже упала до 5 центов за кВт/ч. Об этом сообщает отчет Национальной лаборатории им. Лоуренса в Беркли.

«Учитывая, что солнечные и ветряные установки уже являются самыми дешевыми источниками энергии на рынке разных стран, снижение цен на их эксплуатацию сделает тенденцию повсеместной и позволит перейти с ископаемых источников на возобновляемые ресурсы», — отметил генеральный директор IRENA Аднан Амин.

Потенциал такой системы огромен. Согласно расчетам ученых, мембрана площадью 1 кв. м, 30% которой покрыто нанопорами, сможет производить 1 МВт электричества, достаточно, чтобы подключить 50 000 обычных энергосберегающих лампочек. А поскольку дисульфид молибдена часто встречается в природе, всю систему нетрудно увеличить до промышленных масштабов.

Осмотическая электростанция: чистая энергия соленой воды

Многие ли знают, за счет каких процессов соки в деревьях поднимаются на значительную высоту? Для секвойи она составляет более 100 метров. Происходит эта транспортировка соков в зону фотосинтеза за счет работы физического эффекта – осмоса. Заключается он в простом явлении: в двух растворах разной концентрации, помещенных в сосуд с полупроницаемой (проницаемой только для молекул растворителя) мембраной, спустя некоторое время появляется разность уровней. В дословном переводе с греческого языка осмос – это толчок, давление.

А теперь от живой природы вернемся к технике. Если в сосуд с перегородкой поместить морскую и пресную воду, то за счет разной концентрации растворенных солей появляется осмотическое давление и уровень морской воды поднимется. Молекулы воды перемещаются из зоны высокой их концентрации в зону раствора, где примесей больше, а молекул воды меньше.

Перепад в уровнях воды дальше используется обычным образом: это знакомая работа гидроэлектростанций. Вопрос только состоит в том,насколько эффект осмоса пригоден для промышленного применения? Расчеты показывают, что при солености морской воды 35 г/литр за счет явления осмоса создается перепад давления 2 389 464 Паскаля или около 24 атмосфер. На практике это эквивалентно плотине высотой 240 метров.

Но кроме давления еще очень важной характеристикой является селективность мембран и их проницаемость. Ведь турбины вырабатывают энергию не от перепада давления, а благодаря расходу воды. Вот здесь, до недавнего времени, существовали очень серьезные трудности. Подходящая осмотическая мембрана должна выдерживать давление, превышающее в 20 раз давление в привычном водопроводе. При этом иметь высокую пористость, но задерживать молекулы солей. Сочетание противоречивых требований долго не позволяло использовать осмос в промышленных целях.

При решении задач опреснения воды была изобретена мембрана Лоэба, которая выдерживала колоссальное давление и задерживала минеральные соли и частицы до 5 микрон. Применить мембраны Лоэба для прямого осмоса (выработки электроэнергии) долго не удавалось, т.к. они были чрезвычайно дороги, капризны в эксплуатации и обладали низкой проницаемостью.

Прорыв в использовании осмотических мембран наступил в конце 80-х годов, когда норвежские ученые Хольт и Торсен предложили использовать модифицированную полиэтиленовую пленку на керамической основе. Совершенствование структуры дешевого полиэтилена позволило создать конструкцию спиральных мембран, пригодных для использования в производстве осмотической энергии. Для проверки технологии получения энергии от эффекта осмоса в 2009 году была построена и запущена первая в мире экспериментальная осмотическая электростанция.

Норвежская энергетическая компания Statkraft, получив государственный грант, и затратив более 20 млн. долларов, стала пионером в новом виде энергетики. Построенная осмотическая электростанция вырабатывает около 4 кВт мощности, которой хватает для работы … двух электрических чайников. Но цели постройки станции гораздо серьезней: ведь отработка технологии и испытание в реальных условиях материалов для мембран открывают путь к созданию значительно более мощных сооружений.

Коммерческая привлекательность станций начинается с эффективности съема мощности более 5 Вт с квадратного метра мембран. На норвежской станции в Тофте это значение едва превышает 1 Вт/м2. Но уже сегодня испытываются мембраны с эффективностью 2,4 Вт/м2, а к 2015 году ожидается достижение рентабельного значения 5 Вт/м2.

Осмотическая электростанция в Тофте

Но есть обнадеживающая информация из исследовательского центра Франции. Работая с материалами на основе углеродных нанотрубок, ученые получили на образцах эффективность отбора энергии осмоса около 4000 Вт/м2. А это уже не просто рентабельно, а превышает эффективность практически всех традиционных источников энергии.

Еще более впечатляющие перспективы обещает применение графеновых пленок. Мембрана толщиной в один атомный слой становится полностью проницаема для молекул воды, задерживая при этом любые другие примеси. Эффективность такого материала может превышать 10 кВт/м2. В гонку по созданию мембран высокой эффективности включились ведущие корпорации Японии и Америки.

Если удастся в течении ближайшего десятилетия решить проблему мембран для осмотических станций, то новый источник энергии займет ведущее место в обеспечении человечества экологически чистыми энергоносителями. В отличие от энергии ветра и солнца, установки прямого осмоса могут работать круглые сутки и не зависят от погодных условий.

Мировой резерв энергии осмоса огромен – ежегодный сброс пресных речных вод составляет более 3700 кубических километров. Если удастся использовать только 10% этого объема, то можно вырабатывать более 1,5ТВт/часов электрической энергии, т.е. около 50% европейского потребления.

Но не только этот источник может помочь решить энергетическую проблему. При наличии высокоэффективных мембран можно использовать энергию глубин океана. Дело в том, что соленость воды зависит от температуры, а она на разных глубинах разная.

Используя температурные градиенты солености, можно не привязываться к устьям рек в строительстве станций, а просто размещать их в акватории океанов. Но это уже задача отдаленного будущего. Хотя практика показывает, что делать прогнозы в технике – это неблагодарное занятие. И будущее уже завтра может постучаться в нашу действительность.

Дополнительно

Вообще-то явление осмоса используется в промышленных масштабах уже более 40 лет. Только это не классический прямой осмос аббата Нолле, а так называемый обратный осмос — искусственный процесс проникновения растворителя из концентрированного в разбавленный раствор под действием давления, превышающего естественное осмотическое давление. Такая технология применяется в опреснительных и очистительных установках с начала 1970-х. Соленая морская вода нагнетается на специальную мембрану и, проходя через ее поры, лишается значительной доли минеральных солей, а заодно бактерий и даже вирусов. Для прокачивания соленой или загрязненной воды приходится затрачивать большие объемы энергии, но игра стоит свеч — на планете существует множество регионов, где дефицит питьевой воды является острейшей проблемой.

Теоретические разработки в этой области появились еще в начале ХХ века, но для их реализации не хватало главного — подходящей осмотической мембраны. Такая мембрана должна была выдерживать давление, в 20 раз превышающее давление обычного бытового водопровода, и иметь чрезвычайно высокую пористость. Создание материалов с подобными свойствами стало возможным после Второй мировой, когда накопленный в ходе военных проектов научный потенциал дал толчок развитию технологий производства синтетических полимеров.

Принципиальная схема

Наиболее значительный прорыв в этой области произошел в 1959 году. Сидней Лоэб и Шриниваса Суранджан из Калифорнийского университета в Лос-Анджелесе разработали спиральную анизотропную мембрану, способную выдерживать колоссальное давление, эффективно задерживать минеральные соли и механические частицы размером до 5 мкм и главное — обладающую высокой пропускной способностью при минимальных размерах. Изобретение Лоэба и Суранджана сделало осмотическое опреснение экономически выгодным бизнесом. В начале 1960-х в калифорнийской Коалинге Лоэб построил первую в мире опреснительную станцию на эффекте PRO (Pressure retarded osmosis), а затем перебрался в Израиль, где на средства ЮНЕСКО продолжил свои исследования. При участии Лоэба в 1967 году в местечке Йотвата была построена опреснительная установка мощностью 150 м³ в сутки, производившая чистую питьевую воду из подземного озера с соленостью, десятикратно превышавшей морскую. Еще через три года технология PRO была защищена американским патентом.

Осмос и космос

Мембранная лаборатория в Центре NASA им. Эймса уже много лет подряд занимается решением проблемы обеспечения обитателей космических станций питьевой водой. Ученые разработали технологию DOC, комбинирующую два разнонаправленных процесса – прямой и обратный осмос. При обратном осмосе мембрана работает как фильтр тонкой очистки и требует больших затрат энергии. Прямой осмос, наоборот, производит ее. Каждый из этих процессов по отдельности лишает водные растворы подавляющего количества примесей. В результате получается так называемая серая вода, которую можно использовать для гигиенических целей. Для того чтобы сделать из серой воды питьевую, раствор проходит этап мембранной очистки без дополнительного нагревания и далее очистку от бактерий и вирусов в подсистеме каталитического окисления. Балансовая энергоемкость DOC достаточно низка для применения в космосе.

Оригинальный способ очистки воды для космических станций представила американская компания Osmotek. Для сбора продуктов жизнедеятельности она предлагает использовать мембранные пакеты наподобие чайных с содержащимся в них активированным углем. Мембрана пропускает наружу лишь воду с незначительным количеством загрязнений. Этот первичный раствор затем попадает в мембранную камеру со специальным концентрированным субстратом в другой части. Возникающее явление прямого осмоса завершает процесс.
Компания Oasys обещает снизить расход энергии осмотических опреснительных установок ни много ни мало в десять раз. Правда, в данном случае речь идет не об обратном, а о прямом осмосе. И не простом, а модифицированном. Его суть заключается в наличии на ответной стороне обычной PRO-мембраны патентованного вытягивающего раствора с высоким содержанием аммиака, двуокиси углерода и других химикатов. При контакте двух растворов возникает явление осмоса и происходит очищение исходного сырья от примесей. Изюминка методики Oasys в том, что поток чистой пресной воды не смешивается с вытягивающим раствором.

Опыты по превращению осмотического давления в электрическую энергию с использованием мембран Лоэба-Суранджана проводились различными научными группами и компаниями с начала 1970-х. Принципиальная схема этого процесса была очевидной: поток пресной (речной) воды, проникающий сквозь поры мембраны, наращивает давление в резервуаре с морской водой, тем самым позволяя раскручивать турбину. Затем отработанная солоноватая вода выбрасывается в море. Проблема была лишь в том, что классические мембраны для PRO были слишком дороги, капризны и не обеспечивали необходимой мощности потока. С мертвой точки дело сдвинулось в конце 1980-х, когда за решение задачи взялись норвежские химики Торлейф Хольт и Тор Торсен из института SINTEF.

Мембраны Лоэба требовали клинической чистоты для поддержания максимальной производительности. Конструкция мембранного модуля опреснительной станции предусматривала обязательное наличие первичного фильтра грубой очистки и мощного насоса, сбивавшего мусор с рабочей поверхности мембраны.

Хольт и Торсен, проанализировав характеристики большинства перспективных материалов, остановили свой выбор на недорогом модифицированном полиэтилене. Их публикации в научных журналах привлекли внимание специалистов из Statcraft, и норвежских химиков пригласили продолжить работу под покровительством энергетической компании. В 2001 году мембранная программа Statcraft получила государственный грант. На полученные средства была построена экспериментальная осмотическая установка в Сунндальсьоре для тестирования образцов мембран и обкатки технологии в целом. Площадь активной поверхности в ней была чуть выше 200 м².

Для ускорения процесса в команду были приглашены инженеры из специализированной мембранной лаборатории NASA. Дело в том, что еще со времен подготовки к лунной программе Apollo при Центре NASA им. Эймса проводились глубокие исследования технологий опреснения и очистки водных растворов. Опыт американцев пришелся как нельзя кстати, и к 2008 году у Statcraft появились первые образцы спиральных полиимидных мебран для будущих осмотических электростанций. Их производительность составила 1 Вт на 1 м² при диффузии 10 л пресной воды в секунду под давлением 10 бар.

На станции в Тофте работают именно такие мембранные модули общей площадью 2000 м². Для выработки 4кВт этого вполне достаточно, но для полноценной 25-мегаваттной станции потребовалось бы аж 5 млн квадратов. Разумеется, мембраны для осмотических электростанций должны быть гораздо эффективнее нынешних. Стайн Эрик Скиллхаген, вице-президент Statcraft, курирующий программу, утверждает, что сейчас компания тестирует спиральные образцы из полых волокон производительностью 3 Вт/м2, а к 2015 году появятся плоские 5-ваттные мембраны. Кроме того, норвежцы внимательно изучают сторонние разработки в этой области и активно сотрудничают со специалистами из General Electric, Hydranautics, Dow и японской Toray.

Кстати, мембрана для прямого осмоса — это не тонкая стенка, которую рисуют на упрощенных схемах, а длинный рулон, заключенный в цилиндрический корпус. Соединения с корпусом сделаны таким образом, что во всех слоях рулона с одной стороны мембраны всегда находится пресная вода, а с другой- морская.

Энергия глубин

Разница между соленостью (по-научному — градиент солености) пресной и морской воды — базовый принцип работы осмотической электростанции. Чем она больше, тем выше объем и скорость потока на мембране, а следовательно, и количество энергии, вырабатываемой гидротурбиной. В Тофте пресная вода самотеком поступает на мембрану, в результате осмоса давление морской воды по ту сторону резко возрастает. Силища у осмоса колоссальная — давление может поднять уровень морской воды на 120 м.

Далее полученная разбавленная морская вода устремляется через распределитель давления на лопатки турбины и, отдав им всю свою энергию, выбрасывается в море. Распределитель давления отбирает часть энергии потока, раскручивая насосы, закачивающие морскую воду. Таким образом удается значительно повысить эффективность работы станции. По оценке Рика Стовера, главного технолога компании Energy Recovery, производящей такие устройства для опреснительных заводов, КПД передачи энергии в распределителях приближается к 98%. Точно такие же аппараты при опреснении помогают доставлять питьевую воду в жилые дома.

Как замечает Скиллхаген, в идеале осмотические электростанции нужно совмещать с опреснительными установками — соленость остаточной морской воды в последних в 10 раз выше естественного уровня. В таком тандеме эффективность выработки энергии возрастет не менее чем вдвое.

Строительные работы в Тофте начались осенью 2008 года. На территории завода по производству целлюлозы компании Sódra Cell был арендован пустующий склад. На первом этаже устроили каскад сетчатых и кварцевых фильтров для очистки речной и морской воды, а на втором — машинный зал. В декабре того же года был осуществлен подъем и монтаж мембранных модулей и распределителя давления. В феврале 2009-го группа водолазов проложила по дну залива два параллельных трубопровода — для пресной и морской воды.

Забор морской воды осуществляется в Тофте с глубин от 35 до 50 м — в этом слое ее соленость оптимальна. Кроме того, там она значительно чище, чем у поверхности. Но, несмотря на это, мембраны станции требуют регулярной чистки от забивающих микропоры органических остатков.

С апреля 2009 года электростанция эксплуатировалась в пробном режиме, а в ноябре, с легкой руки принцессы Метте-Марит, была запущена на всю катушку. Скиллхаген уверяет, что вслед за Тофте у Statcraft появятся и другие аналогичные, но более совершенные проекты. И не только в Норвегии. По его словам, подземный комплекс размером с футбольное поле способен бесперебойно снабжать электричеством целый город с 15 000 индивидуальных домов. Причем, в отличие от ветряков, такая осмотическая установка практически бесшумна, не изменяет привычный ландшафт и не влияет на здоровье человека. А о пополнении запасов соленой и пресной воды в ней позаботится сама природа.