Аналитический центр TAdviser совместно с Ростелеком недавно исследовали уровень проникновения решений с использованием ИИ на российском рынке, а также получаемые от них эффекты в разных отраслях. По данным проведенного TAdviser опроса на конец года более 85% крупных российских организаций уже реализовали или пилотируют ИИ-инициативы. По прогнозу PricewaterhouseCoopers (PwC) ускоренное развитие и проникновение ИИ обеспечат к 2030 году увеличение мирового ВВП на 14%. Глобальный институт McKinsey ожидает, что около 70% компаний внедрят как минимум один тип технологии искусственного интеллекта к 2030 году. В этом году, как показал опрос Gartner, более 50% респондентов-CIO планируют развернуть ИИ в своих компаниях – на 14% больше, чем по итогам аналогичного опроса годом ранее. В исследовании, проведенном New Vantage Partners, главные специалисты по работе с данными и решениями ИИ отмечают негативные последствия отказа от инвестиций в такие проекты, так как новые игроки могут получить с помощью этих технологий конкуретные преимущества для прорывного роста.
В исследовании BCG и MIT Sloan Management Review, 9 из 10 респондентов согласны с тем, что ИИ представляет новые бизнес-возможности для их компаний. В то же время, 37% из них отмечают риски таких проектов. О сложностях в реализации инициатив в области больших данных и искусственного интеллекта говорят и 77% руководителей компаний из разных стран, опрошенных SAS.
Примеры использования ИИ в глобальной практике:
- Royal Bank of Scotland: интеллектуальный анализ текста для работы с жалобами клиентов.
- Honda: прогнозирование спроса на запчасти и оптимизация затрат на логистику.
- Lockheed Martin: отслеживание рабочего состояния самолетов, предикативные ремонты.
- Amazon: отслеживание выбора покупок и списание оплаты с помощью умных тележек.
- Стэнфордский университет: прогнозирование лесных пожаров.
- Singapore Aquaculture: мониторинг здоровья рыб на плавучей ферме.
Как показало глобальное исследование Microsoft «Бизнес-лидеры в эпоху ИИ» (Business Leaders in the Age of AI), российские руководители сегодня используют возможности ИИ для бизнеса активнее, чем их коллеги за рубежом. В опросе участвовали 800 топ-менеджеров крупных компаний из Франции, Германии, Италии, Нидерландов, России, Швейцарии, Великобритании, США (выборка – 100 респондентов на страну). В среднем по миру ИИ внедряют 22,3% компаний, а в России – 30% (для сравнения, во Франции – 10%). Российские директора продемонстрировали и более высокую готовность к развитию новых навыков в области ИИ: 90% выразили желание получить профессиональную поддержку для более эффективной работы с этой технологией (в мире – 67,3%).
Среди основных приоритетов использования ИИ российские респонденты Microsoft указали постановку правильных целей (32%), разработку бизнес-идей (26%), определение новых возможностей рынка (25%) и принятие решений (23%). Бизнес привлекает сама возможность трансформировать работу в самых разных направлениях с помощью ИИ, вовлекая инновационные технологии и экспертизу.
Опрос TAdviser: внедрение решений с использованием ИИ в российских компаниях
* Выборка. Было опрошено 100 компаний (крупный и верхний сегмент среднего бизнеса) из более 10 отраслей экономики (финансы, телеком, промышленность, ритейл, госсектор и др.).
* Методика. Методика опроса разработана совместно с экспертами ПАО Ростелеком.
Российский рынок искусственного интеллекта за последние два года стал более зрелым, и сегодня решения ИИ – в фокусе внимания крупного бизнеса и государственных организаций. Их популяризации способствовало технологическое развитие, а также накапливаемый опыт успешных проектов ИИ у крупных игроков-первопроходцев (Сбербанк, ВТБ, X5 Retail Group, Магнит, Газпром нефть и др.). Именно эти компании являются крупнейшими держателями ИТ-бюджетов и обладают сформированной высокопроизводительной инфраструктурой, не ограничивающей запуск нагруженных ИИ-проектов. Реализуемые ими инициативы за последнее время демонстрируют возможности по улучшению процессов с помощью ИИ.
Компании из разных отраслей экономики сегодня сталкиваются с необходимостью трансформации, обусловленной проникновением цифровых технологий и ростом объемов данных. Конкурентное преимущество здесь могут обеспечить интеллектуальные алгоритмы – как в части увеличения дохода, так и в части оптимизации издержек. К настоящему моменту российский бизнес уже достаточно хорошо понимает преимущества применения ИИ – для повышения производительности труда и качества обслуживания клиентов, создания новых продуктов и пр.
Специфика использования ИИ-решений для внутренних задач
По данным TAdviser на конец 2020 года более 85% крупных российских организаций (включая ведущие операционную деятельность в России зарубежные предприятия) используют, в том или ином объеме, ИИ-решения для оптимизации внутренних бизнес-процессов. Эти организации представляют в основном финансовый сектор, телеком, ритейл, ИТ, промышленность и нефтегаз.
Компании, которые пока не используют ИИ-решения, ссылаются главным образом на непонимание возможных эффектов от них (42%), а также на низкую рентабельность таких проектов (41%). Преимущественно это компании, представляющие верхний сегмент среднего бизнеса, располагающие меньшими финансовыми возможностями (в сравнении с цифровыми «чемпионами»), из промышленности, ИТ, банков и ритейла. В то же время более 60% организаций из этой группы респондентов подтверждают свои планы запуска ИИ-инициатив в ближайшем периоде.
С учетом высокой сложности ИИ-проектов, их требовательности не только к инфраструктуре, но и к экспертизе, большинство компаний (54%), даже разрабатывая ИИ-решения самостоятельно, прибегают к закупке интеллектуальных продуктов у внешних игроков. В первую очередь внутреннюю разработку развивают и усиливают крупные компании – в сегментах телекома, ритейла, финансов и промышленности.
Александр Ефимов, заместитель директора по развитию бизнеса SAS Россия/СНГ:
Основная сфера применения ИИ в российских организациях – во-первых, это всё, что связано с обслуживанием клиента: интерактивные помощники по выбору товара или услуги, голосовые помощники, чат-боты. Из того, что остается за кадром, не видимым для конечных пользователей, сейчас эволюционируют системы клиентской аналитики, стали применяться самообучающиеся модели, которые учитывают изменения в структуре потребностей клиента. Во-вторых, это активное развитие систем противодействия мошенничествам, рост которых спровоцировала пандемия. Компаниям в разных отраслях, не только в банках, нужно отвечать на этот вызов. В-третьих, это развитие цифровых двойников во множестве индустрий – от производства фармацевтических препаратов и добывающих предприятий до сельского хозяйства и капитального строительства.
Как правило, компании-заказчики ориентируются на лучшие практики и наиболее технологически зрелые решения. В случае не ограничиваемого выбора большинство респондентов (80%) приобретают продукты как российских, так и зарубежных поставщиков. Ограничены в закупке зарубежных решений сегодня могут быть организации госсектора, а также владельцы критической инфраструктуры – в энергетике, нефтегазе, промышленности; в том числе, компании, попадающие под санкционные риски.
При разработке продуктов или обучении алгоритмов компании-респонденты применяют достаточно широкий спектр данных. Подавляющее большинство использует в решениях, ориентированных на задачи внутренней оптимизации, те данные, которые возникают в результате их операционной деятельности (83%). Ввиду того, что часто технологии ИИ востребованы в процессах, направленных на трансформацию клиентского обслуживания, около 80% респондентов (в том числе, представляющих банки, ритейл и телеком) отмечают, что используют данные клиентов своих компаний. Более половины подтверждают задействование внешних данных, в том числе, партнеров или поставщиков, а также данных из открытых источников (в транспортной сфере, ритейле, в меньшей степени – в промышленности).
Около трети опрошенных компаний затрудняются с оценкой эффектов от внедрения ИИ-решений, либо еще не проводили ее – в случае недавно стартовавших проектов. Эти эффекты могут быть выражены как в росте выручки, так и в сокращении расходов. Пока лишь 3% таких компаний фиксируют эффект в размере более 10 млрд руб.
Евгений Колесников, руководитель Центра машинного обучения «Инфосистемы Джет»:
Искусственный интеллект решает конкретные задачи бизнеса, показывая хорошие результаты: -5 % себестоимости товара на производстве, +15 % эффективности рекламной кампании и т.д. Бизнес идет туда, где есть деньги, поэтому сейчас компании, которые могут себе это позволить, делают внедрения ИИ. Это дает им конкурентные преимущества, которые сыграют в ближайшем будущем решающую роль.
Совокупный эффект от внедрения ИИ-решений у компаний-респондентов TAdviser составил по итогам 2019 года около 60 млрд руб. (более 27 млрд руб. составил дополнительный доход и более 31 млрд руб. – полученная экономия).
При этом озвучиваемая респондентами оценка в большинстве случаев (79%) носит оценочный (субъективный) характер. Лишь 18% компаний располагает официальной оценкой ИИ-проектов, проведенной их внутренними финансовыми службами (как правило, они же согласовывают и запуск подобных инициатив). В первую очередь это свойственно телеком-операторам и промышленным компаниям.
Более 50% опрошенных компаний впервые получили эффекты от ИИ-решений в 2018-2019 гг., тогда же стартовала и национальная программа «Цифровая экономика РФ», многие инициативы которой связаны с увеличением проникновения ИИ в деятельности предприятий и государства. Отмечается некоторый прирост компаний, получивших первые эффекты в 2019 году, относительно 2018 года.
Более 90% респондентов не ожидают сокращения эффектов от внедрения ИИ на фоне пандемии по итогам 2020 г. Многие эксперты делают обратный прогноз, предполагая, что изменения в экономике и переход все большего количества процессов онлайн будут только стимулировать спрос на аналитические решения и алгоритмы для оптимизации процессов и повышения эффективности бизнеса. А применение таких технологий, как биометрия на основе ИИ, поможет сократить количество контактов и обеспечить использование дополнительных факторов защиты (например, распознавание голоса) на удаленных каналах обслуживания. Уменьшение же эффектов от ИИ возможно будет скорее в случае снижения каких-либо ключевых показателей – например, размера аудитории, количества сотрудников в офисах (для эффекта от распознавания лиц в системах видеонаблюдения) и т.д.
Денис Афанасьев, директор центра компетенций больших данных и искусственного интеллекта ЛАНИТ, генеральный директор компании CleverDATA
Высоким спросом сегодня пользуются аналитические модели анализа временных рядов на базе нейронных сетей. Большое количество задач связано именно с таким типом данных, в основанном с анализом показаний различных датчиков и информации IoT. Популярность набирают графовые алгоритмы, особенно в задачах, связанных с анализом взаимодействия людей. Хотим отметить кейсы по предиктивному мониторингу промышленного оборудования. Наши специалисты разработали комплексный подход для идентификации аномальных режимов работы электрогенерирующих турбин, которые позволяют снизить время простоя оборудования и повысить его эффективность.
93% респондентов утверждают, что их компании не сокращали рабочие места из-за внедрения ИИ. Ряд экспертов отмечают, что на текущем этапе развития технологии позволяют эффективно перераспределить рутинные и сложные задачи, передавать часть из них машинным алгоритмам, стимулируя сотрудников развивать новые профессиональные навыки (в том числе, работы с ИИ). В случае же компаний-разработчиков ИТ-решений – по мере усиления ИИ-практики штат сотрудников, наоборот, расширялся, либо расширяется в настоящий момент.
Размер внутренних команд, которые реализуют ИИ-проекты, варьируется от 10-30 до 70-100 и более человек – в зависимости от размера компании, ее финансовых показателей, от того, как долго она занимается развитием внутренней разработки и конкретно – ИИ-решений, а также в зависимости от того, разрабатывает ли она их для продажи на внешнем рынке. Самые крупные команды сосредоточены в больших структурах, много лет последовательно наращивавших свои ИТ-отделы – в финансовой сфере, ритейле или промышленности.
Практика применения ИИ в российских компаниях: кейсы
Наиболее активно внедряют и используют решения с искусственным интеллектом российские банки, телеком компании, ритейл, нефтегаз и промышленность. Как показал опрос TAdviser, в случае компаний В2С сегмента наиболее используемым типом решений на базе ИИ являются виртуальные помощники или чат-боты (для обслуживания клиентов), а также предиктивная аналитика для задач персонализации предложения или сервиса.
Помимо этого, телеком-операторы запускают ИИ для снижения оттока, прогнозирования нагрузок на сеть и выявления мошенничеств. Ритейл использует возможности ИИ для повышения качества взаимодействия с клиентами, товарных рекомендаций, оптимизации складской логистики.
Александр Долгов, заместитель генерального директора ПГК по информационным технологиям:
Используя модели машинного обучения (наибольшую точность показали модели машинного обучения, основанные на методе GBDT – Gradient Boosted Decision Trees), уже сегодня мы с высокой точностью прогнозируем время вагонов в пути. Планируем использовать этот опыт в различных цифровых продуктах компании. Например, в ближайшее время интегрировать прогнозную ML-модель в B2B-систему «Личный кабинет клиента ПГК». Рассчитываем, что это поможет клиентам повысить качество планирования грузовых операций на станциях и, как следствие, сократить простои вагонов и оптимизировать их производственный цикл в целом.
Банки, взаимодействующие как с В2С, так и с В2В клиентами, используют инструменты, ускорящие принятие решений (например, в скоринге), рекомендательные сервисы (например, рекомендации банковских продуктов с использованием знаний о клиенте из социальных сетей, рекомендации контрагентов на основе В2В связей клиентов, робоэдвайзинг в онлайн-трейдинге), а также технологии распознавания образов для повышения безопасности (например, биометрия).
Илья Щиров, руководитель развития канала чатов Райффайзенбанка:
Автоматизация канала чатов – одно из направлений применения технологий ИИ в банке. В 2020 году мы запустили собственную бот-платформу, которая объединяет чат-бот для работы с тестовыми обращениями, а также голосового ассистента для автоматизации входящей линии (голосовой IVR, понимающий свободную речь). Платформа отвечает за «интеллект» ассистента, логику ответов.
Промышленные предприятия и ТЭК используют рекомендательные системы, с диагностикой нетипичного поведения оборудования и прогнозированием его выхода из строя, предсказанием риска поломок и исчерпания ресурса техники на основе мониторинга текущих процессов, рекомендациями по оптимизации (например, в управлении тепловыми режимами), превентивным ремонтам и пр.
Алексей Винниченко, руководитель центра аналитики, СИБУР Диджитал:
СИБУР несколько лет развивает направление продвинутой аналитики. Мы собираем и изучаем параметры технологических режимов на производстве: температуру, давление, количество сырья – и данные для бизнес-процессов: котировки на продукцию, биржевые сводки, внешние рыночные факторы. Сбор данных происходит на базе ML-платформы в центре аналитики СИБУР Диджитал. На основе анализа данных мы создаём самообучающиеся рекомендательные системы и системы поддержки принятия решений. Цифровые инструменты продвинутой аналитики помогают прогнозировать внеплановые остановы, оптимизировать технологические режимы для снижения издержек, повышать качество и увеличивать объёмы выпускаемой продукции, прогнозировать стоимость продукции на основных рынках.
Илья Арсентьев, директор по информационным технологиям Pony Express:
В крупных логистических компаниях искусственный интеллект может использоваться во всех процессах, связанных с огромными объемами данных и ориентированных на большое количество обслуживаемых клиентов. В Pony Express искусственный интеллект применяется для распознавания и стандартизации адресов доставки, автоматического планирования оптимальной сети курьерских маршрутов, для обслуживания клиентов и анализа качества работы операторов в контакт-центре.
Помимо отраслевой специфики, есть своего рода универсальные ИИ-решения, которые используются с целью повышения эффективности документооборота, решения задач бухгалтерии, юридического отдела, HR или Service Desk.
Разработка ИИ-решений «на продажу»
30% опрошенных TAdviser компаний занимается разработкой ИИ-решений для продажи сторонним организациям. Помимо собственно ИТ-компаний, в их число входят также телеком-операторы, отдельные банки, интернет-ритейлеры и промышленные компании.
Около 70% таких поставщиков специализируются на рекомендательных системах и системах поддержки принятия решений; более 50% – на технологиях компьютерного зрения и 48% – на обработке естественного языка. В данной выборке чуть более трети специализируются на решениях в области распознавания речи.
Компании сохраняют традиционную закрытость в отношении показателей выручки от продаж ИИ-решений. В ряде случаев это обусловлено тем, что ИИ поставляется в составе комплексных проектов, и сложно выделить из общей стоимости только эту часть.
У 50% респондентов выручка от ИИ-решений в в 2019 году составляла до 100 млн руб. Совокупный показатель продаж составил около 6 млрд руб.
Более трети опрошенных компаний запустили продажу ИИ-решений на внешний рынок до 2017 года. При этом еще почти половина стратовали с новыми продуктами в 2018-2019 гг. Эффект низкой базы объясняет то, что у почти 70% по итогам 2019 года зафиксирован рост выручки более чем на 10%.
90% опрошенных компаний подтверждают, что планируют выводить на рынок новые решения в 2021 году. В то же время среди тех респондентов, которые пока не разрабатывают ИИ-решения, 10% планируют запустить процесс их создания и выведения на рынок.
Отсутствие интереса к собственной разработке ИИ-решений более 50% компаний объясняют отсутствием такой необходимости – организации сфокусированы на своих традиционных сферах деятельности и источниках дохода, не видя в ИИ весомого расширения для своего товарного предложения. Более трети сдерживают на этом пути высокая стоимость разработки.
Выводы
По данным исследования TAdviser уровень проникновения ИИ-решений в российских компаниях ежегодно растет. Более 85% опрошенных компаний из разных отраслей в 2020 году уже используют, либо пилотируют технологии ИИ для оптимизации внутренних бизнес-процессов. Планируют внедрение таких решений в ближайшие 2 года еще 9% респондентов.
Сдерживающими факторами для использования ИИ-решений остаются непонимание эффектов от них для бизнеса (как правило, не очень крупного) и предполагаемая низкая рентабельность таких проектов.
В силу сохраняющегося дефицита экспертизы в области ИИ на российском рынке компании компенсируют недостающие внутри компетенции закупкой решений на базе ИИ у внешних поставщиков. Этот же подход позволяет сокращать time-to-market разрабатываемых ИИ-продуктов или сервисов. В большинстве случаев закупаются решения как российской, так и зарубежной разработки.
Эффекты от внедрения ИИ-решений могут быть выражены как в росте выручки/дополнительном доходе, так и в сокращении расходов. Совокупно этот показатель составил по итогам 2019 года свыше 59 млрд руб., исходя из экспертных оценок респондентов. Лишь у 18% компаний есть данные об эффектах, подтвержденные внутренними финансовыми службами.
Более 90% респондентов TAdviser не ожидают сокращения эффектов от внедрения ИИ на фоне пандемии по итогам 2020 г.
30% опрошенных TAdviser компаний ведут разработку ИИ-решений для продажи сторонним организациям на внешнем рынке. Из них 90% подтверждают, что представят новые решения в 2021 году. Среди тех респондентов, которые пока не разрабатывают ИИ-решения, 10% планируют также запустить этот процесс.
Полная версия исследования “Эффекты от внедрения решений на базе искусственного интеллекта в российских компаниях” доступна здесь.
Источник: https://www.tadviser.ru/
Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!