Ученые НИТУ “МИСиС” совместно с со своими российскими, а также зарубежными коллегами доказали возможность создания материалов, нереальных с точки зрения привычного нам понимания законов химии. Подвергнув оксид берилия воздействию давления, в сотни тысяч раз превышающего атмосферное давление, исследователи добились “периориентировки” кристаллической структуры материала до пяти- и шести атомов кислорода в окружении берилия, хотя ранее в научном сообществе считалось, что максимально возможное число может быть только четыре. Результаты эксперимента и его теоретическое обоснование ученые представили в журнале Nature Communications. Представьте, что перед вами гора кубиков, и вы что-то собираетесь из них строить, – описывают авторы исследования свою работу. – Вы можете собрать достаточно много разнообразных конструкций, но все равно их количество ограничено из-за формы «стройматериалов», ведь соединяться друг с другом они могут только определенным образом.
Руководитель лаборатории И. Абрикосов (слева) с сотрудниками.
А теперь представьте, что у вас появилась возможность менять форму этих кубиков – растягивать их, добавлять грани, словом, видоизменять так, что количество возможных комбинаций из получившихся «стройматериалов» увеличивается в бесчисленное количество раз.
Кубики, о которых идет речь, – не что иное, как элементы кристаллической структуры материалов, модифицировав которые, можно «наградить» материалы принципиально новыми свойствами. Но определенные трансформации невозможны в рамках привычных представлений.
Решением этой проблемы – преодолением «невозможности» – занимаются ученые из НИТУ «МИСиС» совместно с коллегами из Университета Байройта и Исследовательского центра DESY (Германия), Линчёпинского университета (Швеция), а также Российской академии наук (Институт наук о земле и Кольский научный центр).
Как показали результаты их совместных исследований – лабораторного эксперимента и его теоретического моделирования – получение «невозможных» модификаций материалов вполне возможно – и для этого необходимо подвергнуть их сверхвысоким давлениям, в сотни тысяч раз превышающим атмосферное.
Четырехгранно координированный оксид бериллия
«Мы работали с херлбутитом – одной из форм соединения бериллия с химической формулой CaBe2P2O8. В классических условиях он имеет тетраэдральную структуру – бериллий формирует четырехгранные пирамиды с атомами кислорода, и до недавних пор считалось, что это максимально возможная координация берилия. Однако наши коллеги из Германии провели эксперимент, в результате которого выяснилось, что кристаллическая структура может перестраиваться. В ходе эксперимента материал помещался в алмазную наковальню, где подвергался воздействию сверхвысоких давлений.
Пятигранно координированный оксид бериллия
Так, при давлении в 17 ГПа (170 тысяч земных атмосфер) произошло увеличение числа атомов кислорода окружающих берилий до пяти, а при давлении в 80 ГПа (800 тысяч земных атмосфер) кристалл перестраивался так, что это число возросло до шести. Это невероятный результат, никем и никогда не представленный прежде. Именно поэтому ему требовалось и теоретическое обоснование, проработкой которого мы занялись независимо на нашем суперкомпьютере», – рассказывает профессор Игорь Абрикосов, научный руководитель лаборатории «Моделирование и разработка новых материалов» НИТУ «МИСиС».
Шестигранно координированный оксид бериллия
Теоретическое моделирование результатов эксперимента было проведено учеными НИТУ «МИСиС» в рекордно короткие сроки – всего за один месяц. Для решения уравнения Дирака с заданными переменными была задействована вся вычислительная мощность суперкомпьютерного кластера лаборатории «Моделирование и разработка новых материалов». Без использования такого суперкомпьютера провести расчеты подобной сложности не удалось бы никогда – у привычных вычислительных машин просто не хватило бы мощности. Результаты вычислений почти полностью совпали с результатами эксперимента – различия минимальны, и находятся в допустимых рамках погрешности.
Суперкомпьютер НИТУ «МИСиС»
Как отмечает профессор Абрикосов, во многом бериллий был выбран в качестве экспериментального материала потому, что он пользуется особой популярностью в машиностроении и космической отрасли. Тем не менее, проделанная работа носит в большей степени фундаментальный характер – изучая модификации конкретных материалов, можно построить общую теоретическую модель, позволяющую систематизировать процессы и условия, необходимые для создания «невозможных материалов». В ближайших планах ученых – продолжить исследования, в частности, с таким классом материалов, как полинитриды.
Справка:
Профессор Игорь Абрикосов – д.ф-м.н., научный руководитель лаборатории «Моделирование и разработка новых материалов» НИТУ «МИСиС», заведующий отделом теоретической физики Института физики, химии и биологии Линчёпингского университета, академик Шведской королевской академии наук.
Научная группа под его руководством работает над теоретическим моделированием процессов, проходящих в материалах в условиях высоких и сверхвысоких давлений.
Ранее ученые уже доказали возможность существования «нереальных» модификаций кремнезема и нитридов, а также превращения изолятора гематита в проводник – и все это при давлениях, в сотни тысяч (а иногда и в миллионы) превышающих атмосферное.
Автор: Вадим Нестеров
Источник: https://habr.com/