Предложена новая гетероструктура на основе графена со свойствами полупроводника

Графен является одним из самых известных двумерных материалов, который состоит из одного слоя атомов углерода, составляющих шестигранную решетку. Исследования свойств этого уникального материала показали, что он имеет множество очень интересных свойств, полезных  для применения в наноэлектронике. В частности, внимание исследователей привлекла исключительно высокая подвижность электронов, а также высокая прочность, эластичность и теплопроводность данного материала. Однако у графена есть серьезный недостаток, который мешает его использованию в электронике: графен в своем исходном состоянии не является полупроводником, между тем как современные электронные приборы конструируются именно из полупроводников.  Важнейшее отличие проводников от полупроводников заключается в том, что у последних есть так называемая запрещенная зона, или «энергетическая щель»,

то есть диапазон значений энергии, которые не могут занимать электроны данного кристаллического вещества. Энергетическая щель разделяет минимальные и максимальные значения энергии электронов кристалла.

Как рассказал профессор НИЯУ МИФИ Михаил Маслов, существует несколько способов создания запрещенной зоны в графене. Обычно ученые используют один из трех подходов: химическая модификация (например, фторирование или наводораживание), механическая деформация или создание двухслойной гетероструктуры, в которой запрещенная зона открывается за счет межслоевого взаимодействия.

Однако, говорит профессор НИЯУ МИФИ Константин Катин, все три способа имеют серьезные недостатки. Химическая функционализация часто необратима: чтобы очистить графен от функциональных групп, нужны высокие температуры и агрессивные среды, повреждающие его структуру. А некоторые функциональные группы, зацепившиеся за дефекты, все равно остаются и уменьшают подвижность электронов.

Механическая деформация слишком слабо влияет на запрещенную зону. «Согласно нашим предыдущим работам, растяжение графена на 10% (это почти предел, дальше он может порваться) приводит к открытию очень узкой запрещенной зоны в пределах 0,1 эВ. Та же проблема возникает и с гетероструктурами: неудивительно, что слабое ван-дер-ваальсово притяжение между слоями слабо меняет электронную структуру и не может обеспечить широкую запрещенную зону», — пояснил Константин Катин.

Чтобы решить проблему создания запрещенной зоны в графене, исследователи НИЯУ МИФИ в составе международной научной группы скомбинировали два подхода — межслойное взаимодействие и деформацию. Они перебрали многие пары двумерных «партнеров» графена и установили, что лучшее решение — гетероструктура на основе графена и дителлурида молибдена — вещества, чья молекула состоит из одного атома молибдена и двух атомов теллура.

«При деформации на 8% в графене открывается щель 0,8 эВ, что позволяет ему на равных конкурировать с классическими полупроводниками. И главное достоинство графена — напряжение можно обратимо прикладывать и убирать, возвращая графен в исходное состояние. Кроме того, деформируя гетероструктуру, можно подстраивать ширину ее запрещенной зоны под необходимое значение. Этим не может похвастаться ни один “обычный” полупроводник!» — рассказал Константин Катин.

Исследователи собираются продолжить работу и проверить предположение о том, что найденная гетероструктура может оказаться хорошим фотодетектором.

Результаты исследования опубликованы в научном журнале Diamond and Related Materials​​.

Автор: Ирина Усик
Источник: https://scientificrussia.ru/