На иллюстрации приведена визуализация экситонного транспорта в материале Re6Se8Cl2
N + 1; Jakhangirkhodja A. Tulyagankhodjaev et al. / Science, 2023. Как сатло известно, физики из США открыли новый интересный физический эффект, заключающийся в том, что в хорошо известном сверхатомном полупроводнике, имеющем состав Re6Se8Cl2 и относящемся к ван-дер-ваальсовским материалам, скорость передачи электрического тока на порядок превышает аналогичную скорость для других полупроводниковым материалов. Такое преимущество полупроводник получил из-за формирования акустических экситон-поляронных квазичастиц в качестве переносчиков энергии, устойчивых к фононному рассеянию. Статья об этом исследовании опубликована в журнале Science.
Полупроводниковые технологии основаны на транспортировке носителей энергии и информации от источника к мишени, часто в форме электронов или экситонов — связанных электронно-дырочных пар. При комнатной температуре эти носители быстро рассеиваются из-за фононов в нанометровых и фемтосекундных масштабах. Это приводит к нагреву полупроводника и потерям переносимой энергии, фазовой когерентности и направленности, что накладывает строгие ограничения на скорость и эффективность всех полупроводниковых технологий. Чтобы преодолеть эти ограничения требуются полупроводники, которые поддерживают баллистический — без рассеяния — волнообразный поток энергии на макроскопические расстояния при комнатной температуре.
В 2018 году ученым удалось создать новый тип перспективного полупроводника, состоящего из атомных кластеров Re6Se8Cl2 (хлорид-селенид рения). Каждый кластер состоит из октаэдров, состоящих из шести атомов рения, которые вписанны в куб из атомов селена. По бокам кластеры связаны друг с другом ковалентными связями, а сверху и снизу кластеры [Re6Se8] ограничиваются атомами хлора. Друг с другом слои кластеров связаны довольно слабыми электронными связями. При этом сильная связь электронов с межкластерными оптическими фононами приводит к еще большему уплощению электронных зон при комнатной температуре.
В новой работе Джахангирходжа Туляганходжаев (Jakhangirkhodja A. Tulyagankhodjaev) и его коллеги из Колумбийского университета в Нью-Йорке показали, что в этом материале формируются акустические экситон-поляронные квазичастицы, в которых экситоны оказываются связаны с акустическими деформациями кристаллической решетки. Чтобы изучить распространения поляронов в кристалле, ученые использовали метод микроскопии сверхбыстрого стробоскопического рассеяния. Под действием импульса света в кристалле генерировались экситоны над запрещенной зоной, а затем при помощи широкопольного зонда обратного рассеяния с энергией 1,55 электронвольта — немного ниже электронной запрещенной зоны — определялось, как экситоны изменяют локальную поляризуемость кристалла в пространстве.

Определение характеристик поляронов в Re6Se8Cl2 . Jakhangirkhodja A. Tulyagankhodjaev et al. / Science, 2023
Отслеживая эволюцию энергетической функции экситонов после рождения и сопоставляя ее с измерениями оптического транспорта, физики подтвердили, что именно формирование поляронов влияет на наблюдаемое поведение переноса энергии в кристалле. Ученые отметили, что такие экситон-поляронные состояния оказались — хоть это и контринтуитивно — эффективно защищены от фононного рассеяния.
Дальнейшая разработка полупроводников с баллистическим волнообразным переносом энергии в двумерных материалах может привести к созданию наноэлектроники без потерь энергии.
Автор: Дмитрий Рудик
Источник: https://nplus1.ru/