Первый экспериментальный образец заготовки был изготовлен с использованием уникального оборудования собственной разработки. Благодаря использованию аддитивных технологий общий вес заготовки снизился более чем в три раза, а время изготовления сократилось до 130 часов. Разработчики технологии – это современный Санкт-Петербургский государственный морской технический университет (СПбГМТУ) и Национальный исследовательский технологический университет «МИСиС» (НИТУ «МИСиС»). Полученный опыт позволит также использовать разработанные технологии и при проектировании и изготовлении двигателя ПД-35. Для создания внешнего кольца двигателя ПД-14 был использован титановый сплав, который в виде порошка газовой струей подавался под лазерный луч, оплавляющий его, обеспечивая послойный «рост» детали. В ходе выращивания опытного образца было применено несколько новых технических решений, которые в настоящее время находятся в стадии правовой защиты.
© naukatehnika.com
Например, выращивание горизонтальным лазерным лучом, использование «динамической» подложки для борьбы с образованием трещин, технологические приёмы увеличения производительности процесса, прогнозирование термических деформаций.
© naukatehnika.com
В результате инженеры миновали стадии отливки, ковки и раскатки заготовки. Процесс производства ускорился на порядок, при этом механические свойства выращенного материала не уступают изделиям металлопроката и значительно превосходят свойства литых изделий, что подтверждено результатами механических испытаний, проведенных как в лабораториях НИТУ «МИСиС», так и в независимых лабораториях, включая Центральную заводскую лабораторию (ЦЗЛ).
© naukatehnika.com
Самое важное, что в итоге разработаны математические модели процесса, проведено большое количество исследований, определены оптимальные режимы и стратегии выращивания. В настоящее время готовятся испытания полученного узла двигателя на базе одного из ведущих профильных двигателестроительных предприятий России. Начало промышленного производства запланировано на 2020 год.
© naukatehnika.com
«Корпус камеры сгорания для небольшого газотурбинного двигателя можно вырастить с нуля за 3 часа, в то время как при использовании традиционных технологий на изготовление уйдет около двух недель. В нашем случае для создания заготовки детали потребовалось около 130 часов, при том, что габариты заготовки составляют более 2-х метров в диаметре. Масса заготовки уменьшилась более чем втрое. Это значит, что кардинально снижается объем последующей мехобработки, соответственно, сокращаются сроки изготовления, снижается производственная себестоимость, обеспечивая тем самым конкурентоспособность отечественных авиационных двигателей», — отметил один из разработчиков проекта, директор института ЭкоТех НИТУ «МИСиС» Андрей Травянов.
© naukatehnika.com
Еще одно технологическое преимущество использования аддитивных технологий при создании авиадеталей — конструктор видит результаты в режиме реального времени, и может быстро вносить необходимые изменения. Процесс проектирования и создания новой техники с использованием данного метода ускоряется в десятки раз. Технология дает возможность комбинации нескольких газопорошковых струй и подачи различных материалов в зону выращивания, создавая тем самым изделия с градиентными свойствами, то есть одна часть детали может быть коррозионностойкой, а другая — жаростойкой, что особенно важно для аэрокосмической отрасли.
© naukatehnika.com
«Изготовлению этого образца предшествовали всесторонние теоретические и экспериментальные исследования: были разработаны математические модели процесса, проведено большое количество металлографических исследований, томографии и рентгенографии образцов, механических испытаний, определены оптимальные режимы и стратегии выращивания, изготовлено несколько макетов. В ходе выращивания опытного образца было применено несколько новых технических решений, которые в настоящее время находятся в стадии правовой защиты. Например, выращивание горизонтальным лазерным лучом, использование “динамической” подложки для борьбы с образованием трещин, технологические приёмы увеличения производительности процесса, прогнозирование термических деформаций и их учет в технологической модели изделия при генерации управляющей программы для обеспечения требуемой точности построения», — подчеркивает ответственный исполнитель проекта, зам. директора по научной и проектной деятельности Института лазерных и сварочных технологий СПбГМТУ Евгений Земляков.
О двигателе ПД-14:
Как известно, российский гражданский авиапром оказался в последние десятилетия в сложном положении. Нет, самолеты, которые летают, у нас делать не разучились. Но на мировом рынке авиаперевозок требуется техника, отвечающая высоким эксплуатационным требованиям, особенно в части экономичности, уровня шума и экологической чистоты. Большинству из этих требований спроектированные в советское время пассажирские самолеты не соответствовали или, во всяком случае, проигрывали по этим показателям конкурентам из Airbus, Boeing, Bombardier, Embraer.
ПД-14 — двигатель со сверхвысокой степенью двухконтурности (1:8,3). Это заметно уже по внушительному вентилятору диаметром 1,9 м. Силовая установка будет расходовать топливо очень экономно.
Своего не было
Первую в новой России попытку создать конкурентоспособный продукт предприняла компания «Гражданские самолеты Сухого» со своим Superjet 100. Создателей этого регионального лайнера часто упрекали в том, что, дескать, машину назвать российской можно лишь условно — слишком много в ней импортных комплектующих. Взять, например, двигатели, составляющие порядка трети цены самолета. На Superjet 100 установлены SaM-146 совместного производства французской компании Snecma и российского НПО «Сатурн». Однако самая сложная и дорогая часть турбовентиляторного двигателя — газогенератор (компрессоры, камера сгорания, турбина высокого давления) — решение от французского партнера. И лишь «холодную» часть — вентилятор и вращающую его турбину низкого давления — разрабатывали в Рыбинске на НПО «Сатурн».
Гондола была разработана ОАО «Авиадвигатель» — то есть самим производителем ПД-14. В ней воплощено немало интересных решений, в частности уникальная конструкция реверса.
Иными словами, на момент проектирования Superjet российской промышленности почти нечего было предложить авиастроителям. Своего конкурентоспособного двигателя для регионального самолета у России не было. Как и многого другого. Однако сегодня ситуация изменилась. Новый среднемагистральный лайнер МС-21 (вероятное название в серии Як-242) уже в значительно меньшей степени будет зависеть от кооперации с иностранными поставщиками. И хотя, как это принято, заказчик самолета получит право выбора и сможет отдать предпочтение силовой установке иностранного производства, российские двигатели для МС-21 будут. Точнее, они уже есть.
ПД-14 относится к турбовентиляторным двигателям, в которых потоки из двух контуров не смешиваются. Воздух из второго «холодного» контура истекает из соплового насадка, имеющего волнистые края.
Параметры мирового уровня
Двигатель ПД-14 пятого поколения разработан пермским ОАО «Авиадвигатель». В основе его лежит унифицированный газогенератор: 8-ступенчатый компрессор, малоэмиссионная камера сгорания, турбина высокого давления. Этот газогенератор будет также использован в других двигателях семейства ПД с более низкой или более высокой тягой. ПД-14 дает тягу 14 т, а работу второго контура в нем обеспечивают вентилятор с полыми широкохордными лопатками и турбина низкого давления. Степень двухконтурности двигателя есть отношение расхода воздуха через наружный контур к расходу воздуха через внутренний контур, и для двигателя ПД-14 она равна 8,3. Это современный показатель как для отечественных турбовентиляторных двигателей, так и для зарубежных. Высокая степень двухконтурности дает значительное уменьшение расхода топлива. Согласно заявлению разработчика ПД-14, снижение удельного расхода потребления топлива по сравнению с современными аналогами составит 10−15%. Заявленный уровень шума на 15−20 дБ ниже норм, установленных 4-м стандартом ИКАО, а уровень эмиссии вредных веществ NOx будет на 30% ниже относительно норм ИКАО 2008 года. Это соответствует современным экологическим нормам.
Двигатель ПД-14 уникален еще и тем, что впервые в практике отечественного двигателестроения производитель разработал не только сам двигатель, но и гондолу к нему (обычно мотогондолу изготавливает под конкретный двигатель фирма, создающая самолет). Таким образом, у двигателя уже есть крепление, рассчитанное на пилон МС-21, и к крылу Ил-76ЛЛ оно не подходит. Специалистам ЛИИ пришлось конструировать специальную силовую проставку — переходник между креплениями пилона МС-21 и крыла Ил-76ЛЛ.
На этом фото запечатлен процесс подвешивания гондолы с двигателем к пилону летающей лаборатории. Для соединения креплений разных типов применен специальный силовой переходник.
Куда девать энергию?
Самая же главная инженерная проблема в том, что новый двигатель не может испытываться под управлением штатных систем ЛЛ. В лаборатории необходимо воссоздать все системы управления экспериментальной силовой установкой, схожие с теми, что будут использованы на МС-21, а также достоверно воспроизвести все нагрузки, под которыми будет работать двигатель. С этой целью перед испытаниями необходимо было сконструировать и встроить в летающую лабораторию все соответствующее оборудование.
Двигатель не только создает реактивную тягу, он — энергетическое сердце самолета. С помощью вала и редуктора вал турбины высокого давления связан с КПСА (коробкой приводов самолетных агрегатов). В КПСА передаваемый туда крутящий момент «разбирается» электрогенератором и гидравлическими насосами. Сейчас от двигателей требуется как можно больше электрической мощности, особенно ввиду тенденции к замене ряда гидравлических приводов электрическими. На Ил-76ЛЛ установлена система отбора электрической мощности. Отбираемая от генератора мощность реализуется в специальных тепловых электрозагружателях (ТЭН), которые установлены в обтекателях, обдуваемых в полете наружным воздухом.
На заднем плане виден главный пульт управления опытным двигателем: сидя за этим пультом, ведущий инженер ЛИИ управляет режимами ПД-14 в ходе испытательного полета. Ближе к нам — рабочие места других специалистов, отслеживающих параметры работы двигателя.
Кроме крутящего момента от двигателя отбирается сжатый воздух, который поступает в системы самолета МС-21. Отбор воздуха для разных целей производится в нескольких точках газогенератора. Например, после третьей ступени компрессора отводится воздух для нужд кондиционирования пассажирского салона МС-21. На летающей лаборатории нет системы отбора воздуха с параметрами системы кондиционирования, аналогичной той, что будет в МС-21, так как отбор сжатого воздуха — это отбор мощности от двигателя, а значит, во время испытаний эта нагрузка также должна быть реализована. ЛЛ также насыщена контрольно-измерительным оборудованием. При эксплуатации серийного двигателя бортовой параметрический самописец регистрирует 30−40 параметров работы установки. В ходе испытаний с экспериментального двигателя, оборудованного множеством датчиков, снимается 1066 параметров. Данные поступают на центральный сервер, на пульт ведущего инженера в грузовой кабине Ил-76ЛЛ, на дисплей в кабине пилотов, по радиоканалу в наземный контрольный пункт и непосредственно специалистам в Пермь, в ОАО «Авиадвигатель».
Рабочее место одного из инженеров, участвующих в испытаниях, и шкаф с вычислительной техникой, анализирующей данные с помощью специально разработанного ПО.
Соло на одном моторе
Когда наступает время поднять ЛЛ в воздух, в кресла летного экипажа садятся опытнейшие летчики-испытатели ЛИИ им. М.М. Громова. В грузовой кабине места у пультов занимают инженеры-испытатели. В распоряжении пилотов все обычные системы управления самолетом Ил-76ЛЛ и его двигателями. И только экспериментальным двигателем управляет ведущий инженер-испытатель из ЛИИ. Рядом с ним за центральным пультом еще один представитель ЛИИ и инженер от предприятия-разработчика ПД-14. «Взлетаем мы на трех двигателях по специальной методике, чтобы из-за несимметричной тяги самолет не слетел с полосы, — рассказывает Александр Крутов, заслуженный летчик-испытатель, Герой России, начальник Школы летчиков-испытателей ЛИИ. — На данной стадии испытаний на взлете опытный двигатель работает только на малом газе. Сначала прогреваем три штатных двигателя. Потом второй двигатель, симметричный опытному, убираем на малый газ и потихоньку начинаем разбег. Выводим на взлетный режим 1-й и 4-й штатные двигатели. Затем в процессе разбега плавно выводим 3-й штатный двигатель на взлетный режим. Отрываемся на трех, набираем высоту. Так удается на взлете избежать опасных разворачивающих моментов».
Уже после набора высоты ведущий инженер-испытатель, в распоряжении которого находится установленный на главном пульте рычаг управления опытного двигателя, приступает непосредственно к испытаниям. Первая программа инженерных испытаний ПД-14 рассчитана всего на 12 часов полетов. По завершении каждого полета полученная информация анализируется специалистами ЛИИ, и представители ОАО «Авиадвигатель» внимательно осматривают узлы двигателя, оценивают его состояние, устраняют возможные недоработки. Конечно, первой серией испытательных полетов все не закончится. Двигатель ждут новые испытания с большими нагрузками, в том числе в условиях высокогорья, сильной жары и лютого холода. Но уже сейчас, по утверждениям специалистов ЛИИ, участвующих в испытаниях, характеристики двигателя ПД-14 соответствуют расчетным данным на проверенных режимах.
Источники: https://sdelanounas.ru/, https://www.popmech.ru/
Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!