Иллюстрация: Antonio Ortu et al. / npj Quantum Information. Группа физиков смогла показать работоспособность квантовой памяти, которая предназначена для хранения простых кубитов с временным кодированием на основе кристалла 151Eu3+:Y2SiO5. Было показано, что данная память способна удерживать кубиты в течение 20 миллисекунд, при этом степень совпадения на выходе составила 85 процентов для одного фотона на кубит. Результаты исследования опубликованы в журнале npj Quantum Information. В квантовой механике кубитом называется простейшая система, способная находиться в двух различных состояниях или в их суперпозиции. Важной особенностью кубитов является реальная возможность их запутывания. Запутанность характеризуется наличием сложных неклассических корреляций между кубитами и невозможностью описания состояний нескольких кубитов как произведения одночастичных состояний. Общее определение кубита приводит к большому разнообразию физических систем, которые могут быть использованы для их реализации.
Они не только различаются по типу физических носителей, (например, фотоны, электроны, ядра, сверхпроводящие контуры и так далее), но и по их характеристикам, которые кодируют кубит. Например, у тех же фотонов квантовая информация может храниться в поляризации, их числе, а также во временных свойствах. В последнем случае систему называют кубитом со временным кодированием (time-bin qubit, TB-кубит). Состояние такого кубита представляет собой суперпозицию состояний, соответствующих фотону, который движется с различной временной задержкой. Обычно фотон, прибывающий раньше, соответствует состоянию |0>, а позже — |1>. Простейшим способом создания такого кубита стал интерферометр, чьи плечи имеют различную длину.
Впрочем, мало создать фотонные кубиты, надо также уметь ими манипулировать, а также ретранслировать их запутанность дальше в системе повторителей. Последнее необходимо в приложениях распределения квантового ключа на большие расстояния, распределенных квантовых вычислениях и квантовых симуляциях. Перспективным подходом к созданию соответствующих узлов стали кристаллы, допированные редкоземельными ионами. На сегодня наибольшее время хранения квантовой информации в таких средах не превышает одной миллисекунды. Однако даже краткосрочным квантовым повторителям требуется время хранения не менее 10 миллисекунд, хотя, скорее всего, оно должно быть в десятки раз больше. Это служит мотивацией для поиска условий, которые могли бы продлить когерентность редкоземельных ионов.
Физики из Франции и Швейцарии при участии Микаэля Афзелиуса (Mikael Afzelius) сообщили о том, что им удалось добиться времени хранения кубитов со временным кодированием равного 20 миллисекундам в кристалле 151Eu3+:Y2SiO5. Этого удалось добиться применением к кристаллу техники динамической развязки и небольшого магнитного поля. Извлеченные из кристалла фотоны продемонстрировали степень совпадения (fidelity) равную 85 процентам для среднего количества фотонов на кубит равного 0,92.
В основе квантовой памяти, созданной авторами, лежит механизм фотонного эха. Этот эффект заключается в обратимости эволюции когерентных атомных состояний с помощью правильно подобранной серии управляющих импульсов. В результате атомный ансамбль, поглотивший некоторую сигнальную последовательность импульсов, после некоторых манипуляций переизлучает ее обратно.
Для хранения TB-кубитов с помощью фотонного эха требуется одновременное хранение нескольких временных мод. Для этого физиками была придумана концепция атомных частотных гребенок — то есть спектра поглощения кристалла, состоящего из эквидистантных линий. Для создания таких гребенок физики как правило используют серию мощных импульсов с частотным интервалом, работающих за счет эффекта электромагнитно-индуцированной прозрачности.
Основной 7F0 и возбужденный 5D0 термы иона Eu3+, использованного в работе, разделяет оптический переход на длине волны 580 нанометров. Из-за наличия ядерного спина каждый из них расщепляется на три сверхтонких дуплета с интервалами порядка нескольких десятков мегагерц. Эта структура позволила авторам выбрать Λ-схему, в которой решетка наводится на первый подуровень основного терма (|g>), переход с него на первый подуровень возбужденного терма (|e>) нужен для записи кубита, а второй подуровень основного терма (|s>) нужен для его долгосрочного хранения.

Схема энергетических уровней иона европия. Antonio Ortu et al. / npj Quantum Information
Протокол эксперимента начинался с создания атомной частотной гребенки в кристалле в небольшом магнитном поле, за которым следовало поглощение фотонов, информация с которых должна быть сохранена. Следом физики облучали кристалл мощным и близким по частоте передаточным импульсом, который переводил возбуждение в состояние |s>. Радиочастотное поле, создаваемое катушкой, обернутой вокруг кристалла, динамически подавляло (развязывало) взаимодействие между спиновой когерентностью состояния и внешними возмущениями, а также компенсировало дефазировку, вызванную неоднородным уширением перехода |g>↔|s>. Протокол завершался еще одним передаточным импульсом, который возвращал атомы в состояние |e>, откуда они излучали те же самые фотоны.

Протокол работы квантовой памяти. Antonio Ortu et al. / npj Quantum Information
В схеме, реализованной авторами, удалось достичь хранения шести различных мод. Анализ времени когерентности показал, что до некоторой степени оно растет с увеличением числа импульсов развязки вплоть до 230 миллисекунд. Однако эксперименты с одиночными фотонами показали, что при временах, превышающих 20 миллисекунд, шум становится слишком большим. Наконец, физики посмотрели, как кристалл будет хранить идеально чистое суперпозиционное состояние. Для этого они кодировали раннее состояние с помощью второй и третьей моды, а позднее — с помощью пятой и шестой, и запускали соответствующие фотоны в кристалл. Томография выходных состояний показала, что их степень совпадения равна 85 ± 2 процентов для среднего количества фотонов на кубит равного 0,92 ± 0,04.
Ранее мы уже рассказывали, как другой редкоземельный ион — иттербий, — помещенный в оптический резонатор, продемонстрировал высокую когерентность спинового состояния и быстрое его считывание.
Автор: Марат Хамадеев
Источник: https://nplus1.ru/

