Взгляд в будущее авиации и ракетостроения: рассказ об импульсных детонационных двигателях

Существующие двигательные установки для авиации и ракет показывают весьма высокие характеристики, но вплотную приблизились к пределу своих возможностей. Для дальнейшего повышения параметров тяги, создающего задел для развития авиационной ракетно-космической отрасли, необходимы другие двигатели, в т.ч. с новыми принципами работы. Большие надежды возлагаются на т.н. детонационные двигатели. Подобные системы импульсного класса уже испытываются в лабораториях и на летательных аппаратах. В существующих и эксплуатируемых двигателях на жидком топливе используется дозвуковое горение или дефлаграция. Химическая реакция с участием топлива и окислителя образует фронт, перемещающийся по камере сгорания с дозвуковой скоростью. Такое горение ограничивает количество и скорость реактивных газов, истекающих из сопла. Соответственно, ограничивается и максимальная тяга. Альтернативой является детонационное горение.

Прямоточный импульсный детонационный двигатель. Графика “Горение и взрыв”

В этом случае фронт реакции перемещается со сверхзвуковой скоростью, образуя ударную волну. Подобный режим горения увеличивает выход газообразных продуктов и обеспечивает повышенную тягу.

Детонационный двигатель может быть выполнен в двух вариантах. Одновременно разрабатываются импульсные или пульсирующие двигатели (ИДД / ПДД) и ротационные / вращающиеся. Их отличие заключается в принципах горения. Ротационный двигатель поддерживает постоянную реакцию, а импульсный работает за счет последовательных «взрывов» смеси топлива и окислителя.

Импульсы образуют тягу

В теории, по своей конструкции ИДД не сложнее традиционного прямоточного воздушно-реактивного или жидкостного ракетного двигателя. Он включает камеру сгорания и сопловой аппарат, а также средства подачи топлива и окислителя. При этом накладываются особые ограничения на прочность и стойкость конструкции, связанные с особенностями работы двигателя.

Опытный самолет Long-EZ с ИДД. Фото National Museum of USAF

Во время работы форсунки подают в камеру сгорания топливо; окислитель подводится из атмосферы помощи воздухозаборного устройства. После образования смеси происходит воспламенение. За счет правильного подбора компонентов топлива и пропорций смеси, оптимального способа воспламенения и конфигурации камеры образуется ударная волна, движущаяся в направлении сопла двигателя. Текущий уровень технологий позволяет получить скорость волны до 2,5-3 км/с с соответствующим повышением тяги.

ИДД использует пульсирующий принцип работы. Это означает, что после детонации и выхода реактивных газов камера сгорания продувается, вновь наполняется смесью – и следует новый «взрыв». Для получения высокой и стабильной тяги этот цикл должен осуществляться с большой частотой, от десятков до тысяч раз в секунду.

Сложности и преимущества

Главным преимуществом ИДД является теоретическая возможность получения повышенных характеристик, обеспечивающих превосходство над существующими и перспективными ПВРД и ЖРД. Так, при той же тяге импульсный двигатель получается компактнее и легче. Соответственно, в тех же габаритах можно создать более мощную установку. Кроме того, такой двигатель проще по своей конструкции, поскольку не нуждается в части приборного оснащения.

ИДД работоспособен в широком диапазоне скоростей, от нулевых (при старте ракеты) до гиперзвуковых. Он может найти применение в ракетно-космических системах и в авиации – в гражданских и военных областях. Во всех случаях его характерные особенности позволяют получить те или иные преимущества перед традиционными системами. В зависимости от потребностей, возможно создание ракетного ИДД, использующего окислитель из бака, или воздушно-реактивного, принимающего кислород из атмосферы.

Впрочем, имеются существенные недостатки и затруднения. Так, для освоения нового направления приходится проводить различные достаточно сложные исследования и опыты на стыке разных наук и дисциплин. Специфический принцип работы предъявляет особые требования к конструкции двигателя и ее материалам. Ценой высокой тяги оказываются повышенные нагрузки, способные повредить или разрушить конструкцию двигателя.

ИДД для Long-EZ. Фото National Museum of USAF

Сложной задачей является обеспечение высокой скорости подачи топлива и окислителя, соответствующей необходимой частоте детонаций, а также выполнение продувки перед подачей топлива. Кроме того, отдельной инженерной проблемой является запуск ударной волны при каждом цикле работы.

Следует отметить, что к настоящему времени ИДД, несмотря на все усилия ученых и конструкторов, не готовы к выходу за пределы лабораторий и полигонов. Конструкции и технологии нуждаются в дальнейшей отработке. Поэтому пока не приходится говорить о внедрении новых двигателей в практику.

История технологии

Любопытно, что принцип импульсного детонационного двигателя впервые был предложен не учеными, но писателями-фантастами. К примеру, подлодка «Пионер» из романа Г. Адамова «Тайна двух океанов» использовала ИДД на водородно-кислородной газовой смеси. Схожие идеи фигурировали и в других художественных произведениях.

Научные изыскания по теме детонационных двигателей начались чуть позже, в сороковых годах, причем пионерами направления были советские ученые. В дальнейшем в разных странах неоднократно предпринимались попытки создания опытного ИДД, но их успех серьезно ограничивало отсутствие необходимых технологий и материалов.

31 января 2008 г. агентство DARPA министерства обороны США и Лаборатория ВВС начали испытания первой летающей лаборатории с ИДД воздушно-реактивного типа. Оригинальный двигатель установили на доработанном самолете Long-EZ от фирмы Scale Composites. Силовая установка включала четыре трубчатые камеры сгорания с подачей жидкого топлива и забором воздуха из атмосферы. При частоте детонаций 80 Гц развивалась тяга ок. 90 кгс, чего хватало только для легкого летательного аппарата.

Импульсные детонационные двигатели как будущее ракет и авиацииРоссийский ротационный детонационный двигатель “Ифрит”. Фото НПО “Энергомаш”

Эти испытания показали принципиальную пригодность ИДД для применения в авиации, а также продемонстрировали необходимость совершенствования конструкций и повышения их характеристик. В том же 2008 г. опытный самолет отправили в музей, а DARPA и смежные организации продолжили работу. Сообщалось о возможности применения ИДД в перспективных ракетных комплексах – но пока они не разработаны.

В нашей стране тематика ИДД изучалась на уровне теории и практике. К примеру, в 2017 г. в журнале «Горение и взрыв» появилась статья об испытаниях детонационного прямоточного двигателя на газообразном водороде. Также продолжаются работы по ротационным детонационным двигателям. Создан и испытан РДД на жидком топливе, пригодный для использования на ракетах. Прорабатывается вопрос использования таких технологий в авиационных двигателях. В этом случае детонационная камера сгорания интегрируется в состав турбореактивного двигателя.

Перспективы технологии

Детонационные двигатели представляют большой интерес с точки зрения применения в разных областях и сферах. За счет ожидаемого прироста основных характеристик они могут, как минимум, потеснить системы существующих классов. Однако сложность теоретической и практической разработки пока не позволяет им дойти до использования на практике.

Впрочем, в последние годы наблюдаются положительные тенденции. Детонационные двигатели в целом, в т.ч. импульсные, все чаще появляются в новостях из лабораторий. Развитие этого направления продолжается, и в будущем сможет дать желаемые результаты, хотя сроки появления перспективных образцов, их характеристики и области применения пока остаются под вопросом. Однако сообщения последних лет позволяют смотреть в будущее с оптимизмом.

Автор: Рябов Кирилл
Источник: https://topwar.ru/