Из МФТИ пришло сообщение о том, что его физики показали возможность локального управления Джозефсоновскими вихрями. Открытие может быть востребовано в сверхпроводящих устройствах квантовой электроники, в будущих квантовых процессорах. Джозефсоновский вихрь — это вихрь токов, возникающий в системе из двух сверхпроводников, разделенных слабой связью (диэлектриком, нормальным металлом и др.) в присутствии внешнего магнитного поля. В 1962 году Джозефсон предсказал эффект протекания сверхпроводящего тока через тонкий слой изолятора, разделяющий два сверхпроводника. Такой ток назвали джозефсоновским током, а такое соединение сверхпроводников — джозефсоновским контактом. Между двумя сверхпроводниками через диэлектрик или металл, не являющийся сверхпроводником, образуется связь, называемая слабой, и устанавливается макроскопическая квантовая когерентность. Когда эту систему помещают в магнитное поле, сверхпроводники магнитное поле выталкивают.
Чем большее магнитное поле прикладывается, тем больше сверхпроводимость сопротивляется проникновению магнитного поля в джозефсоновскую систему. Однако слабая связь — это место, в которое поле может проникнуть в виде отдельных джозефсоновских вихрей, несущих квант магнитного потока. Вихри Джозефсона часто рассматриваются как настоящие топологические объекты, 2π-фазовые сингулярности, наблюдение и манипулирование которыми достаточно сложно.
Ученые из лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ решили применить магнитно-силовой микроскоп (МСМ) для изучения джозефсоновских вихрей в системе из двух сверхпроводящих контактов из ниобия и прослойки из меди (Nb/Cu/Nb), играющей роль слабой связи.
Мы показали, что в планарных (плоских) контактах `сверхпроводник — нормальный металл — сверхпроводник` джозефсоновские вихри имеют своеобразный отпечаток. Он был обнаружен при проведении магнитно-силовой микроскопии таких структур. Основываясь на этом открытии, мы продемонстрировали возможность локальной генерации джозефсоновского вихря и манипулирования им магнитным кантилевером микроскопа. Наше исследование — это еще один шаг к созданию будущих сверхпроводящих квантовых вычислителей, говорит Василий Столяров, ведущий научный сотрудник лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ.
Разнообразие сверхчувствительных сверхпроводящих устройств, кубитов и архитектур для квантовых вычислений быстро растет. Ожидается, что устройства сверхпроводящей квантовой электроники в ближайшем будущем бросят вызов обычным полупроводниковым устройствам. Джозефсоновские контакты являются строительными блоками подобных устройств.
Визуализировать джозефсоновские вихри достаточно сложно, поскольку они плохо локализованы. Мы нашли способ измерять диссипацию, возникающую при рождении / уничтожении такого вихря в области слабой связи. Диссипация — это небольшое выделение энергии. В нашем случае выделение энергии происходит при движении вихря в планарном джозефсоновском контакте. Таким образом, при помощи нашего магнитно-силового микроскопа мы хорошо детектируем не только статический магнитный портрет сверхпроводящей структуры, но и динамические процессы в ней, добавляет Василий Столяров.
Авторы работы показали способ дистанционной генерации, детектирования и манипулирования джозефсоновскими вихрями в планарных джозефсоновских переходах с использованием низкотемпературного магнитно-силового микроскопа.
При определенных параметрах (местоположение зонда, температура, внешнее магнитное поле, электрический ток через образец) ученые наблюдали особый отклик кантилевера микроскопа. Это сопровождалось появлением резких колец/дуг на изображениях.
Исследователи идентифицировали эти особенности как точки бифуркации между соседними джозефсоновскими состояниями, характеризующиеся различным числом или положением джозефсоновских вихрей внутри перехода. Процесс сопровождается обменом энергии кантилевера с образцом в точках бифуркации и демонстрирует, что магнитно-силовой микроскоп может предоставить уникальную информацию о состоянии вихря Джозефсона.
Ожидается, что результаты работы послужат толчком для разработки основанных на открытии авторов методов локальной бесконтактной диагностики и управления современными сверхпроводящими устройствами и сверхпроводниковой квантовой электроникой.
Источник: http://www.tadviser.ru/