Фото: https://www.tn.ru/. Корпорация “Технониколь” ввела в Ленинградской области в эксплуатацию завод по вторичной переработке полистирола, который будет ежегодно перерабатывать до 6,5 тыс. тонн полимерных отходов. «Завод ежегодно будет превращать во вторичную гранулу до 6,5 тыс. тонн полимерных отходов (или в переводе в натуральные величины — более 400 млн вспененных подложек для овощей и фруктов)», — сообщили в пресс-службе. На заводе будут перерабатывать рыбные ящики, вспененные подложки для продуктов, упаковки пенопласта без антипирена, обрезки экструдированного полистирола, а также полимерные флаконы, крышки, бутылки, трубы, пленки, поддоны и детали автокомпонентов. Впоследствии из них будут производиться дорожные плиты, профилированные мембраны и битумные кровельные материалы.
Суммарный объем инвестиций в строительство завода и запуск новых мощностей составит, по данным пресс-службы, 480 млн рублей. «Перерабатывая пластики, мы не только убираем отходы с улиц, но и экономим природные ресурсы. Для производства полимеров требуется большое количество невозобновляемых ресурсов — нефти и газа. Но если изделие уже выпущено и однократно использовано, то повторно сформировать из него гранулу — менее затратный процесс, на который требуется меньше 10% от той энергии, которая была затрачена на производство первичного материала», — цитирует пресс-служба совладельца и управляющего партнера компании Сергея Колесникова.
Корпорация «Технониколь» — международный производитель строительных материалов и систем. Включает более 60 производственных площадок, 20 учебных и шесть научных центров. Как ранее сообщал ТАСС, выручка компании в 2022 году составила 179 млрд рублей. В 2023-2024 годы предприятие планирует также запустить линию мойки и переработки изделий из полиэтилена и полипропилена.
Справка:
Вторичная переработка однородных полимеров — относительно простая задача, если их структура сохранилась и ни во время изготовления, ни во время первичного использования не было значительной деструкции. Разумеется, процесс деструкции, следствием которого могут быть структурные и морфологические изменения, вызванные уменьшением молекулярной массы, образованием ветвей, других химических групп и т. п., приводит к существенному ухудшению всех физических свойств.
Если вторичные материалы, сохранившие свои свойства, могут быть использованы в тех же приложениях, что первичные полимеры, то вторичные материалы с пониженными свойствами менее можно использовать только в специфических приложениях. Поэтому при механической повторной переработке однородных полимеров задача заключается в том, чтобы избежать дальнейшей деструкции в ходе технологического процесса, то есть избежать ухудшения свойств конечного материала. Этого можно достичь правильным выбором оборудования для переработки, условий переработки неведением стабилизаторов.
Полистирол (ПС) имеет множество применений, таких как упаковка, электронные и электрические устройства, игрушки и другое. Различные типы ПС охарактеризованы в таблице 1.
Таблица 1. Типы полистирола
ПС общего назначения | Аморфный прозрачный ПС |
Высокоударопрочный ПС | Модифицированный каучуками ПС |
Разреженный ПС | Разреженный пентаном ПС |
Экструдированный, разреженный ПС | Экструдированный, разреженный газом ПС |
Двухосноориентированный ПС | Двухосноориентированная пленка |
Деструкция ПС происходит главным образом в результате воздействия высоких температур, но присутствие кислорода, механическое напряжение и длительное нахождение на открытом воздухе существенно ускоряет кинетику деструкции. Как можно видеть, температура максимальной стабильности лежит в области 180 0С. Очевидно, что влияние температуры пренебрежимо мало по сравнению с фактором присутствия кислорода. Механическое напряжение и время воздействия также могут оказывать существенное влияние на кинетику деструкции при переработке ПС.
Увеличение индекса текучести свидетельствует об уменьшении вязкости и молекулярной массы. Термомеханическая стабильность ПС неплохая при низких и умеренных скоростях перемешивания (то есть при низком и умеренном механическом напряжении), но она падает с увеличением напряжения, приложенного к расплаву.
В предыдущем примере предполагалось, что молекулярная масса и свойства ПС лишь незначительно изменяются при переработке расплава. Действительно, повторные циклы литья под давлением образцов ПС, бывшего в употреблении, не вызывали значительных изменений свойств конечного материала.
Другие экспериментальные данные подтверждают этот результат, показывая уменьшение предела прочности и относительного удлинения. Однако конечные механические свойства все-таки удовлетворяют требованиям, необходимым для обычного использования полимера. Интересной чертой вторичной переработки ПС является то, что, в то время как повторные технологические манипуляции не влияют существенно на его механические свойства (о чем говорилось выше), вязкость полимера резко падает. Уменьшение молекулярной массы зависит от условий переработки и от начальной молекулярной массы. В таблице 2 показано изменение молекулярной массы после одного цикла экструзии для трех различных образцов ПС.
Таблица 2. Молекулярная масса ПС до и после одного цикла экструзии
Исходная молекулярная масса |
Молекулярная масса полсе одного цикла экструзии |
234 000 |
230 000 |
670 000 |
570 000 |
1 800 000 |
690 000 |
Чем больше исходная молекулярная масса, тем заметнее ее падение после экструдирования. Приведенные данные ясно указывают на то, что деструкция расплава существенно усиливается механическим напряжением, так как «пружина» деструкционного процесса становится сильнее с ростом исходной вязкости расплава. Такое поведение ведет к улучшению перерабатываемости без влияния на конечные свойства материала.
Утилизация отходов полистирольных пластиков
Отходы полистирола накапливаются в виде вышедших из употребления изделий из ПС и его сополимеров, а также в виде промышленных (технологических) отходов ПС общего назначения, ударопрочного ПС (УПС) и его сополимеров.
Вторичное использование полистирольных пластиков может идти по следующим путям:
-
утилизация сильно загрязненных промышленных отходов;
-
утилизация технологических отходов УПС и АБС-пластика методами литья под
-
давлением, эктрузии и прессования;
-
утилизация изношенных изделий;
-
утилизация отходов пенополистирола (ППС);
-
утилизация смешанных отходов.
Сильно загрязненные промышленные отходы образуются в производстве ПС и полистирольных пластиков при чистке реакторов, экструдеров и технологических линий в виде кусков различной величины и формы. Эти отходы вследствие загрязненности, неоднородности и низкого качества в основном уничтожают путем сжигания. Возможна их утилизация деструкцией, с использованием получаемых жидких продуктов в качестве топлива. Возможность присоединения к бензольному кольцу полистирола ионогенных групп позволяет получать на его основе иониты. Растворимость полимера в процессе переработки и эксплуатации также не меняется. Поэтому для получения механически прочных ионитов можно применять технологические отходы и изношенные полистирольные изделия, молекулярную массу которых путем термической деструкции доводят до значений, которые требуются по условиям синтеза ионитов (40…50 тыс.). Последующее хлорметилирование полученных продуктов приводит к получению соединений, растворимых в воде, что свидетельствует о возможности использования вторичного полистирольного сырья для получения растворимых полиэлектролитов.
Технологические отходы ПС (так же, как и ПО) по своим физико-механическим и технологиче¬ским свойствам не отличаются от первичного сырья. Эти отходы являются возвратными и в основном используются на тех предприятиях, где они образуются. Их можно добавлять к первичному ПС или использовать в качестве самостоятельного сырья при производстве различных изделий.
Значительное количество технологических отходов (до 50%) образуется в процессе переработки полистирольных пластиков литьем под давлением, экструзией и вакуумформованием, возврат которых в технологические процессы переработки позволяет значительно повысить эффективность использования полимерных материалов и создавать безотходные производства в промышленности переработки пластмасс.
АБС-пластики широко применяются в автомобилестроении для изготовления крупных деталей автомобилей, при производстве сантехнического оборудования, труб, товаров народного потребления и т.д.
В связи с увеличением потребления стирольных пластиков растет и количество отходов, использование которых является экономически и экологически целесообразным с учетом возрастания стоимости сырья и уменьшения его ресурсов. Во многих случаях вторичное сырье можно использовать для замены первичных материалов. Установлено, что при неоднократной переработке АБС полимера в нем протекают два конкурирующих процесса: с одной стороны, частичная деструкция макромолекул, с другой – частичная межмолекулярная сшивка, возрастающие по мере увеличения числа циклов переработки. При выборе способа переработки экструзионного АБС доказана принципиальная возможность формования изделий методами прямого прессования, экструзии, литья под давлением.
Эффективной технологической стадией переработки отходов АБС является сушка полимера, позволяющая довести содержание влаги в нем до уровня, не превышающего 0,1%. В этом случая устраняется образование таких дефектов в материале, возникающих от избытка влаги, как чешуйчатая поверхность, серебристость, расслаивание изделий по толщине; от предварительной сушки свойства материала улучшаются на 20…40%. Однако способ прямого прессования оказывается малопроизводительным, а экструзия полимера затрудняется из-за его высокой вязкости.
Перспективной представляется переработка технологических отходов АБС полимера методом литья под давлением. При этом для улучшения текучести полимера необходимо вводить технологические добавки. Добавка к полимеру облегчает процесс переработки АБС полимера, так как приводит к увеличению подвижности макромолекул, гибкости полимера и снижению его вязкости. Полученные по такому способу изделия по своим эксплутационным показателям не уступают изделиям из первичного полимера, а порой даже превосходят их. Бракованные и изношенные изделия можно утилизировать измельчением с последующим формованием полученной крошки в смеси с первичными материалами или в качестве самостоятельного сырья.
Значительно более сложная ситуация наблюдается в области утилизации изношенных изделий из ПС, в том числе вспененных пластиков. За рубежом основными путями их утилизации являются пиролиз, сжигание, фото- или биоразложение, захоронение. Амортизованные изделия культурно-бытового назначения, а также промышленности полимерных, строительных, теплоизоляционных материалов и других можно подвергать повторной переработке в изделия. В основном это касается изделий из ударопрочного ПС. Блочный ПС необходимо перед повторной переработкой совмещать с ударопрочным ПС (в соотношении 70:30), модифицировать другими способами или подвергать вторичной переработке его сополимера с акрилонитрилом, метилметакрилатом (МС) или тройные сополимеры с МС и акрилонитрилом (МСН). Сополимеры МС и МСН отличаются более высокой стойкостью к атмосферному старению (по сравнению с ударопрочными композициями), что имеет большое значение при последующей переработке. Вторичный ПС можно добавлять к ПЭ.
Для превращения отходов полистирольных пленок во вторичное полимерное сырье их подвергают агломерированию в роторных агломераторах. Низкое значение ударной вязкости ПС обусловливает быстрое измельчение (по сравнению с другими термопластами). Однако высокая адгезионная способность ПС приводит, во-первых, к слипанию частиц материала и образованию крупных агрегатов до того (80 0С), как материал становится пластичным (130 0С), и, во-вторых, к прилипанию материала к перерабатывающему оборудованию. Это значительно затрудняет агломерирование ПС по сравнению с ПЭ, ПП и ПВХ.
Отходы ППС можно растворять в стироле, а затем полимеризовать в смеси, содержащей измельченный каучук и другие добавки. Полученные таким способом сополимеры характеризуются достаточно высокой ударной прочностью.
В настоящее время перед перерабатывающей промышленностью стоит проблема переработки смешанных отходов пластмасс. Технология переработки смешанных отходов включает сортировку, помол, промывку, сушку и гомогенизацию. Полученный из смешанных отходов вторичный ПС обладает высокими физико-механическими показателями, его можно в расплавленном состоянии добавлять в асфальт и битум. При этом снижается их стоимость, и прочностные характеристики возрастают примерно на 20%. Для повышения качества вторичного полистирольного сырья проводят его модификацию. Для этого необходимы исследования его свойств в процессе термостарения и эксплуатации. Старение ПС пластиков имеет свою специфику, которая наглядно проявляется особенно для ударопрочных материалов, которые помимо ПС содержат каучуки.
При термообработке материалов из ПС (при 100…200 0С) его окисление идет через образование гидропероксидных групп, концентрация которых в начальной стадии окисления быстро растет, с последующим образованием карбонильных и гидроксильных групп. Гидропероксидные группы инициируют процессы фотоокисления, протекающие при эксплуатации изделий из ПС в условиях воздействия солнечной радиации. Фотодеструкция инициируется также ненасыщенными группами, содержащимися в каучуке. Следствием комбинированного влияния гидропе-роксидных и ненасыщенных групп на ранних стадиях окисления и карбонильных групп на более поздних стадиях является меньшая стойкость к фотоокислительной деструкции изделий из ПС по сравнению с ПО. Наличие ненасыщенных связей в каучуковой составляющей УПС при его нагревании приводит к автоускорению процесса деструкции.
При фотостарении ПС, модифицированного каучуком, разрыв цепи преобладает над образованием поперечных связей, особенно при большом содержании двойных связей, что оказывает значительное влияние на морфологию полимера, его физико-механические и реологические свойства. Все эти факторы необходимо учитывать при повторной переработке изделий из ПС и УПС.
Источники: https://sdelanounas.ru/, https://plastinfo.ru/