Физики из Университета Рочестера, Национального института стандартов и технологий и Массачусетского технологического института впервые реализовали на практике абсолютно стойкуюсистему квантового шифрования. Она позволяет передавать шесть бит информации в каждом фотоне сигнала, причем длина ключа меньше чем длина сообщения. Это позволяет передавать новый ключ внутри основного сообщения, что невозможно в классических вариантах шифрования. Описание метода доступно на arXiv.org, кратко о нем сообщает MIT Technology Review.
Абсолютно стойкими называются те алгоритмы шифрования, которые не позволяют расшифровать сообщение без секретного ключа даже такому злоумышленнику, который обладает безгранично большими вычислительными мощностями. К таким алгоритмам относится, например, шифр Вернама.
Для его использования необходима пара условных «блокнотов» со случайно-сгенерированными секретными ключами, каждая страница которых используется лишь один раз. К каждому символу сообщения добавляется число из секретного ключа, соответственно, для расшифровки это число необходимо вычесть. При попытке злоумышленника подобрать секретный ключ, он получит набор всевозможных фраз такой же длины, как и зашифрованное сообщение. Идентифицировать искомую информацию среди них будет невозможно.
В 1949 году Клод Шеннон определил основные требования к абсолютно стойким шифрам. В частности, ключ для такого шифра должен быть равен по длине или превосходить длину кодируемого сообщения. Но физики доказали, что в квантовой криптографии это требование теоретически можно обойти и сделать ключ экспоненциально короче самого сообщения.
В новой работе ученые продемонстрировали на практике технологию такого квантового шифрования. В основе устройства лежатпространственные модуляторы света (SLM) — матрицы (в эксперименте — 512×512), преобразующие фазу и интенсивность проходящего сквозь них света определенным известным образом в зависимости от положения матрицы. Затем прошедший свет передавался напрямую, открытым способом. При этом происходит линейный сдвиг точки фокуса луча. Не зная, какие именно преобразования были сделаны, невозможно восстановить исходные характеристики света.
Даже если перехватывающий открытую информацию злоумышленник будет обладать таким же модулятором света, каким обладают отправитель и получатель сигнала, не зная последовательность действий с модулятором, он не сможет восстановить информацию.
Кроме того ученые показали, что размер ключа, используемого в шифровании меньше, чем длина сообщения, что позволяет помещать в сообщение новый ключ. Это позволяет решить проблему безопасной передачи ключа от отправителя к получателю. В эксперименте исследователи кодировали на 6 бит ключа 1 бит сообщения 2,3 бита секретного ключа и 2,7 бит избыточной информации, необходимой для того, чтобы понять, правильно ли расшифровано сообщение.
Авторы отмечают, что предложенный алгоритм шифрования можно использовать с уже существующими устройствами для квантового шифрования и передачи квантовых ключей.
Квантовая криптография (шифрование)
Квантовая криптография по праву считается новым витком в эволюции информационной защиты. Именно она позволяет создать практически абсолютную защиту шифрованных данных от взлома.
История
Идея использовать квантовые объекты для защиты информации от подделки и несанкционированного доступа впервые была высказана Стефаном Вейснером в 1970 г. Спустя 10 лет ученые Беннет и Брассард, которые были знакомы с работой Вейснера, предложили использовать квантовые объекты для передачи секретного ключа. В 1984 г. они опубликовали статью, в которой описывался протокол квантового распространения ключа ВВ84.
Носителями информации в протоколе ВВ84 являются фотоны, поляризованные под углами 0, 45, 90, 135 градусов.
Позднее идея была развита Экертом в 1991 году. В основе метода квантовой криптографии лежит наблюдение квантовых состояний фотонов. Отправитель задает эти состояния, а получатель их регистрирует. Здесь используется квантовый принцип неопределенности Гейзенберга, когда две квантовые величины не могут быть измерены одновременно с требуемой точностью. Таким образом, если отправитель и получатель не договорились между собой, какой вид поляризации квантов брать за основу, получатель может разрушить посланный отправителем сигнал, не получив никакой полезной информации. Эти особенности поведения квантовых объектов легли в основу протокола квантового распространения ключа.
Алгоритм Беннета
В 1991 году Беннет для регистрации изменений в переданных с помощью квантовых преобразований данных использовать следующий алгоритм:
- Отправитель и получатель договариваются о произвольной перестановке битов в строках, чтобы сделать положения ошибок случайными.
- Строки делятся на блоки размера k (k выбирается так, чтобы вероятность ошибки в блоке была мала).
- Для каждого блока отправитель и получатель вычисляют и открыто оповещают друг друга о полученных результатах. Последний бит каждого блока удаляется.
- Для каждого блока, где четность оказалась разной, получатель и отправитель производят итерационный поиск и исправление неверных битов.
- Чтобы исключить кратные ошибки, которые могут быть не замечены, операции предыдущих пунктов повторяются для большего значения k.
- Для того чтобы определить, остались или нет необнаруженные ошибки, получатель и отправитель повторяют псевдослучайные проверки, а именно: получатель и отправитель открыто объявляют о случайном перемешивании позиций половины бит в их строках; получатель и отправитель открыто сравнивают четности (если строки отличаются, четности должны не совпадать с вероятностью 1/2); если имеет место отличие, получатель и отправитель, использует двоичный поиск и удаление неверных битов.
- Если отличий нет, после m итераций получатель и отправитель получают идентичные строки с вероятностью ошибки 2-m.
Реализация идеи квантовой криптографии
Схема практической реализации квантовой криптографии показана на рисунке. Передающая сторона находится слева, а принимающая – справа. Ячейки Покеля необходимы для импульсной вариации поляризации потока квантов передатчиком и для анализа импульсов поляризации приемником. Передатчик может формировать одно из четырех состояний поляризации. Передаваемые данные поступают в виде управляющих сигналов на эти ячейки. В качестве канала передачи данных может быть использовано оптоволокно. В качестве первичного источника света можно использовать и лазер.
На принимающей стороне после ячейки Покеля установлена кальцитовая призма, которая расщепляет пучок на два фотодетектора (ФЭУ), измеряющие две ортогональные составляющие поляризации. При формировании передаваемых импульсов квантов возникает проблема их интенсивности, которую необходимо решать. Если квантов в импульсе 1000, есть вероятность, что 100 квантов по пути будет отведено злоумышленником на свой приемник. В последующем, анализируя открытые переговоры между передающей и принимающей стороной, он может получить нужную ему информацию. Поэтому в идеале число квантов в импульсе должно быть около одного. В этом случае любая попытка отвода части квантов злоумышленником приведет к существенному изменению всей системы в целом и, как следствие, росту числа ошибок у принимающей стороны. В подобной ситуации принятые данные должны быть отброшены, а попытка передачи повторена. Но, делая канал более устойчивым к перехвату, специалисты сталкиваются с проблемой “темнового” шума (получение сигнала, который не был отправлен передающей стороной, принимающей стороной) приемника, чувствительность которого повышена до максимума. Для того, чтобы обеспечить надежную передачу данных, логическому нулю и единице могут соответствовать определенные последовательности состояний, допускающие коррекцию одинарных и даже кратных ошибок.
Дальнейшего повышения отказоустойчивости квантовой криптосистемы можно достичь, используя эффект EPR, который возникает, когда сферически симметричный атом излучает два фотона в противоположных направлениях в сторону двух наблюдателей. Фотоны излучаются с неопределенной поляризацией, но в силу симметрии их поляризации всегда противоположны. Важной особенностью этого эффекта является то, что поляризация фотонов становится известной только после измерения. Экерт предложил криптосхему на основе эффекта EPR, которая гарантирует безопасность пересылки и хранения ключа. Отправитель генерирует некоторое количество EPR фотонных пар. Один фотон из каждой пары он оставляет для себя, второй посылает своему партнеру. При этом, если эффективность регистрации близка к единице, при получении отправителем значения поляризации 1, его партнер зарегистрирует значение 0 и наоборот. Таким образом партнеры всякий раз, когда требуется, могут получить идентичные псевдослучайные кодовые последовательности. Практически реализация данной схемы проблематична из-за низкой эффективности регистрации и измерения поляризации одиночного фотона.
Экспериментальные реализации
Американские эксперименты
Еще сравнительно недавно метод квантового распространения ключа воспринимался как научная фантастика. Но в 1989 г. в Уотсоновском исследовательском центре IBM группой ученых под руководством Чарльза Беннета и Джила Брасарда была построена первая система экспериментально-практической реализации протокола ВВ84. Эта система позволила двум пользователям обмениваться секретным ключом со скоростью передачи данных 10 бит/с на расстоянии 30 см.
Позже идея получила развитие в Национальной лаборатории Лос-Аламоса в эксперименте по распространению ключа по оптоволоконному кабелю на расстояние 48 км. При передаче сигнала в воздушной среде расстояние составило 1 км. Разработан план эксперимента по передаче квантового сигнала на спутник. Если этот эксперимент увенчается успехом, можно надеяться, что технология вскоре станет широко доступной.
Квантово-криптографические исследования развиваются быстрыми темпами. В ближайшем будущем методы защиты информации на основе квантовой информации будут использоваться в первую очередь в сверхсекретных военных и коммерческих приложениях.
Эксперимент Toshiba
23 июня 2015 года компания Toshiba сообщила о начале подготовки к выводу на рынок не взламываемой системы шифрования[1].
По мнению разработчиков новой технологии, лучший способ защитить информацию в сети – использовать одноразовые ключи для дешифрования. Проблема в безопасной передаче самого ключа.
Toshiba начала исследования в сфере технологий квантовой криптографии в 2003 году. Свою первую систему компания представила в октябре 2013 года, а в 2014 году в компании добились стабильной передачи квантовых ключей по стандартному оптоволокну в течение 34 дней.
При всех своих принципиальных достоинствах этому методу свойственны значительные базовые ограничения: вследствие затухания светового сигнала, передача фотонов (без репитера) возможна на расстояние не более 100 км. Фотоны чувствительны к вибрации и высоким температурам, это также осложняет их передачу на большие расстояния. А для внедрения технологии требуется оборудование, где один сервер стоит около $81 тыс.
По состоянию на 24 июня 2015 года Toshiba не отказывается от планов запуска долгосрочного тестирования системы для верификации метода. В ходе тестирования, оно начнется 31 августа 2015 года, зашифрованные результаты анализа генома, полученные в Toshiba Life Science Analysis Center, будут передаваться в Tohoku Medical Megabank (при университете Tohoku), на расстояние примерно 7 км. Программа рассчитана на два года, до августа 2017 года. В ходе исследования будут контролироваться стабильность скорости передачи при длительной работе системы, влияние условий окружающей среды, включая погоду, температура и состояние оптического соединения.
Если эксперимент завершится успешно, коммерческое использование технологии станет возможно через несколько лет. К 2020 году компания предполагает начать предоставление услуг государственным организациям и крупным предприятиям. С удешевлением технологии, сервис придет и к частным пользователям.
2015: Acronis внедряет квантовое шифрование
30 сентября 2015 года компания Acronis сообщила о планах внедрить технологии квантового шифрования в свои продукты для защиты данных. Поможет ей в этом швейцарская ID Quantique, инвестором которой является созданный Сергеем Белоусовым фонд QWave Capital[2].
Компания Acronis займется разработкой технологий квантовой криптографии. Вендор планирует оснастить ими свои продукты и считает, что это обеспечит более высокий уровень безопасности и конфиденциальности. Acronis рассчитывает стать первой на рынке компанией, внедрившей подобные методы защиты.
Партнером Acronis по разработке квантовой криптографии станет швейцарская компания ID Quantique, с которой вендор заключил соглашение. ID Quantique — компания, связанная с генеральным директором Acronis Сергеем Белоусовым – он основатель фонда QWave Capital, одного из инвесторов ID Quantique.
Одна из технологий, которую Acronis планирует внедрить в свои решения – квантовое распределение ключа. Ключ шифрования передается по оптоволоконному каналу посредством одиночных фотонов. Попытка перехвата или измерения определенных параметров физических объектов, которые в этом случае являются носителями информации, неизбежно искажает другие параметры. В результате, отправитель и получатель обнаруживают попытку получения неавторизованного доступа к информации. Также планируется применить квантовые генераторы случайных чисел и шифрование, устойчивое к квантовым алгоритмам.
Технологии ID Quantique ориентированы на защиту информации в государственном секторе и коммерческих компаниях.
«Квантовые вычисления требуют нового подхода к защите данных, — заявил Сергей Белоусов. — Мы в Acronis убеждены, что конфиденциальность является одной из важнейших составляющих при комплексной защите данных в облаке. Сегодня мы работаем с такими ведущими компаниями, как ID Quantique, чтобы пользователи наших облачных продуктов получали самые безопасные решения в отрасли и были защищены от будущих угроз и атак».
В компании Acronis выражают уверенность – квантовое шифрование поможет избавить заказчиков (полагающих, что провайдер сможет прочесть их данные) от страха отправки данных в облако.
Перспективы развития
Квантовая криптография еще не вышла на уровень практического использования, но приблизилась к нему. В мире существует несколько организаций, где ведутся активные исследования в области квантовой криптографии. Среди них IBM, GAP-Optique, Mitsubishi, Toshiba, Национальная лаборатория в Лос-Аламосе, Калифорнийский технологический институт (Caltech), а также молодая компания MagiQ и холдинг QinetiQ, поддерживаемый британским министерством обороны. Диапазон участников охватывает как крупнейшие мировые институты, так и небольшие начинающие компании, что позволяет говорить о начальном периоде в формировании рыночного сегмента, когда в нем на равных могут участвовать и те, и другие.
Конечно же, квантовое направление криптографической защиты информации очень перспективно, так как квантовые законы позволяют вывести методы защиты информации на качественно новый уровень. На сегодняшний день уже существует опыт по созданию и апробированию компьютерной сети, защищенной квантово-криптографичекими методами – единственной в мире сети, которую невозможно взломать.
Квантовая криптография для мобильных устройств
Квантовая криптография — чрезвычайно надежный в теории метод защиты каналов связи от подслушивания, однако на практике реализовать его пока довольно трудно. На обоих концах канала должна быть установлена сложная аппаратура — источники одиночных фотонов, средства управления поляризацией фотонов и чувствительные детекторы. При этом для измерения угла поляризации фотонов необходимо точно знать, как ориентировано оборудование на обоих концах канала. Из-за этого квантовая криптография не подходит для мобильных устройств.[3]
Ученые из Бристольского университета предложили схему, при которой сложное оборудование необходимо только одному участнику переговоров. Второй лишь модифицирует состояние фотонов, кодируя этим информацию, и отправляет их обратно. Аппаратуру для этого можно разместить в карманном устройстве. Авторы предлагают и решение проблемы ориентации оборудования. Измерения производятся в случайных направлениях. Список направлений может быть опубликован открыто, но при расшифровке будут учитываться только совпадающие направления. Авторы называют метод «независимым от системы отсчета квантовым распределением ключей»: rfiQKD.
Литература
- Charles H. Bennett, Francois Bessette, Gilles Brassard, Louis Salvail, and John Smolin, “Experimental Quantum Cryptography”, J. of Cryptography 5, 1992, An excellent description of
- A.K. Ekert, ” Quantum Cryptography Based on Bell’s Theorem”, Phys. Rev. lett. 67, 661 (1991).
- Toby Howard, Quantum Cryptography, 1997, www.cs.man.ac.uk/aig/staff/toby /writing/PCW/qcrypt.htm
- C.H. Bennet, ” Quantum Cryptography Using Any Two Non-Orthogonal States”, Phys. Rev. lett. 68, 3121 (1992).
- А. Корольков, Квантовая криптография, или как свет формирует ключи шифрования. Компьютер в школе, № 7, 1999
- В. Красавин, Квантовая криптография
Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!