Иллюстрация: Rebecca Leane & Juri Smirnov / жур. arXiv.org, Физики провели моделирование поведения гипотетических частиц темной материи под воздействием гравитационного поля звезд и планет. Результаты исследования, опубликованные в предварительной версии на arXiv.org, свидетельствуют о возможности образования значительных скоплений таких частиц вблизи поверхностей небесных тел. Авторы работы указывают на потенциальную концентрацию до 10 триллионов частиц темной материи в кубическом сантиметре у поверхности Земли при условии сечения взаимодействия с нуклонами в диапазоне от 10⁻²⁹ до 10⁻²⁸ квадратных сантиметров. Несмотря на наличие множества косвенных доказательств существования темной материи – гипотетической формы вещества, не участвующей в электромагнитном взаимодействии, ее непосредственное обнаружение с помощью детекторов пока не удалось. Точная структура частиц темной материи также остается предметом дискуссий: различные модели предсказывают существенно отличающиеся массы и другие характеристики.
сечения взаимодействия с обычным веществом и распределения концентрации в пространстве (для регистрации темной материи важно знать не только параметры одной частицы, но и понимать, где они скапливаются в заметном количестве).
Ребекка Лин (Rebecca Leane) из Стэндфордского университета и Юрий Смирнов (Juri Smirnov) из Ливерпульского университета предложили свою модель, которая прогнозирует распределение концентрации темной материи вблизи поверхности звезд и планет. Авторы проанализировали рассеяние и отражение частиц темной материи на частицах
Стандартной модели (то есть обычном веществе). В результате многократных рассеяний частицы темной материи постепенно теряют скорость, и если это происходит вблизи небесного тела — звезды или планеты — может случиться так, что скорость в конце концов окажется меньше второй космической, и тогда частицу захватит тяготение небесного тела.
Считая, что потерей и аннигиляцией захваченных частиц можно пренебречь, физики определяли полное число частиц темной материи в объеме небесного тела как произведение среднего темпа их захвата (суммарного за любое число рассеяний для каждой частицы) на время существования этого небесного тела.
Затем, чтобы вычислить концентрацию темной материи у поверхности, авторы аналитически моделировали диффузию и теплопроводность захваченных частиц темной материи в объеме заполненного обычным веществом сферического небесного тела. При этом ученые полагали, что концентрация темной материи гораздо меньше концентрации обычного вещества, а само обычное вещество находится в гидростатическом равновесии и приближенно может быть описано уравнением состояния идеального газа. По словам исследователей, выбор последнего обусловлен тем, что более точные уравнения состояния усложнили бы вычисления, однако лишь увеличили бы прогнозируемую концентрацию частиц темной материи у поверхности — значит, для нижней оценки достаточно более простого уравнения состояния.
Пользуясь аналитическими результатами, авторы проделали вычисления концентрации частиц темной материи у поверхности для Земли, Юпитера, Солнца и коричневого карлика массой в 50 Юпитеров и возрастом 10 миллиардов лет. Для простоты все объекты за исключением Земли физики полагали состоящими полностью из водорода. Поверхностным слоем ученые считали слой толщиной в один километр для нашей планеты (соответствует типичной глубине подземных экспериментов) и область на расстоянии между 99,9 и 100 процентами радиуса от центра небесного тела для остальных объектов.

Профили концентрации темной материи для четырех небесных тел. Разному цвету отличают разные массы частиц. Штриховыми линиями показаны равновесные профили (отсутствуют потоки частиц темной материи в объеме тела), сплошными — профили на современном этапе эволюции. Rebecca Leane & Juri Smirnov / arXiv.org
Оказалось, что при оптимистичных значениях сечения взаимодействия темной материи с нуклонами (порядка 10—29—10—28 квадратных сантиметров) у поверхности всех рассмотренных небесных тел будут образовываться заметные концентрации темных частиц: в частности, для Земли концентрация оценивается в 1013 частиц в кубическом сантиметре, для Солнца — на порядок больше. По словам авторов, это мотивирует новые поиски таких поверхностных частиц в будущих экспериментах.
Кроме того, исследователи отмечают, что в дальнейшем результаты модели могут помочь предсказать, как захваченная небесным телом темная материя влияет на содержание в нем элементов обычного вещества — это могло бы разрешить проблему солнечного состава (расхождение в теоретическом прогнозе и наблюдательных данных для этого состава на уровне значимости в шесть стандартных отклонений).
Ранее мы рассказывали о том, как параметры темной материи ограничили с помощью наблюдений Юпитера и о том, как самовзаимодействием темной материи объяснили ускоренное расширение Вселенной.
Автор: Николай Мартыненко
Источник: https://nplus1.ru/

