Секретный квантовый ключ был впервые передан на расстояние 511 километров по квантовой линии передачи данных

Иллюстрация: Jiu-Peng Chen et al. / arXiv.org, 2021. Физикам удалось передать секретный квантовый ключ на расстояние 511 километров в реальных условиях. Они смогли реализовать квантовую линию передачи данных не в лабораторных условиях, а в реальных между двумя городами. Препринт работы опубликован на arXiv.org. Одно их направлений квантовых технологий, которое быстрее всего нашло применение — квантовая криптография — пока все еще далеко от массового распространения из-за разных технических сложностей. Про первую в России банковскую линию связи и о том, как устроены криптографические системы, мы писали ранее. На тот момент (2016 год) ученым из Российского квантового центра удалось передать квантовый ключ на расстояние 25 километров, что неплохо для внутригородской среды, но недостаточно для междугородней. Физики искали разные пути решения для того, чтобы увеличить это расстояние до сотен километров — занимались разработкой повторителей для существующих протоколов и придумывал новые. Одним из многообещающих протоколов квантового распределения ключа оказался протокол полей-близнецов TF (Twin Field).

Читать далее

Новые открытия в комбинаторике и теории графов: удивительные достижения логики молодого математика Ашвина Саха

Ашвин Сах возрастом в 21 год выдал несколько научных работ, которые опытные математики посчитали беспрецедентными для студента колледжа. 19 мая Ашвин Сах опубликовал лучший на сегодня результат в одной из самых важных областей комбинаторики. В такой момент иной человек поднял бы бокал в честь данного события, однако Сах тогда был ещё недостаточно взрослым для того, чтобы пить алкоголь [по законам США / прим. пер.]. Это доказательство стало очередной работой из целого списка математических достижений, которые Сах, отпраздновавший свой 21-й день рождения в ноябре, опубликовал во время своей учёбы в Массачусетском технологическом институте. Данная работа была опубликована сразу после того, как он получил учёную степень. Это редкий случай такого раннего развития даже для области знаний, в которой появляется достаточно много молодых гениев. «Будучи студентом, он опубликовал достаточно работ для того, чтобы его можно было принимать на работу в университет», — сказал Дэвид Конлон из Калифорнийского технологического института. Майское доказательство касалось важной особенности комбинаторикичисел Рамсея.

Читать далее

Система глубокого обучения AlphaFold смогла решить задачу фолдинга белков с небывалой точностью: подробности проекта

На иллюстрации: Белок бактерии Staphylococcus aureus. В конце ноября команда Google DeepMind объявила о том, что её система глубокого обучения AlphaFold достигла небывалых уровней точности в решении задачи фолдинга белков – трудной проблемы из области вычислительной биохимии.В чём состоит эта проблема и почему её так трудно решить? Белки – это длинные цепочки аминокислот. Ваша ДНК кодирует эти последовательности, а РНК помогает производить белки согласно этой генетической схеме. Белки синтезируются в виде линейных цепочек, но впоследствии сворачиваются в сложные шарообразные структуры (см. картинку в начале статьи). Часть цепочки может свернуться в плотную спираль, “α-спираль“. Другая часть может согнуться туда и обратно, сформировав широкую плоскую фигуру, “β-лист“. Сами эти компоненты также складываются, формируя уникальные сложные формы. Это называется третичной структурой. Выглядит беспорядочно. Почему же этот спутанный клубок аминокислот так важен? Структура белка не случайна! Каждый белок сворачивается в определённую, уникальную, и по большей части предсказуемую структуру, что совершенно необходимо для его правильной работы.

Читать далее

Теоретически доказана возможность создания гипотетического досветового варп-двигателя из обычной материи

Физики теоретически проанализировали возможность создания варп-двигателя — гипотетического объекта, который позволяет путешествовать с около- и сверхсветовыми видимыми скоростями (с точки зрения внешнего наблюдателя) за счет существенного искажения пространства-времени вокруг путешественника. Оказалось, что, в отличие от сверхсветовых полетов, для путешествий с субсветовой скоростью оболочку такого аппарата можно изготовить из обычной материи. В то же время механизмы разгона корабля и большая масса, которая требуется оболочке, по-прежнему остаются проблемными вопросами. Статья опубликована в журнале Classical and Quantum Gravity. В конце прошлого века физик Мигель Алькубьерре из Уэльского университета, вдохновившись сюжетом сериала «Звездный путь», описал теоретическую модель путешествий с видимой сверхсветовой скоростью, которая не требует использования кротовых нор. Идея ученого состояла в том, чтобы создать своего рода пузырь, который окружает космический аппарат, сжимая пространство-время перед кораблем и растягивая позади.

Читать далее

Впервые детально изучено движение пузырей в составе жидкой пены: неожиданные открытия в обыденных объектах

Иллюстрации: Naoya Yanagisawa, Rei Kurita / Scientific Reports, 2021. Физики исследовали движение пузырьков во влажной пене и выяснили, что пузырьки, сильно отличающиеся по размеру, перемещаются более хаотично, чем одинаковые. Для этого ученые деформировали слой пены, добавляя к нему капли воды, и наблюдали, как система возвращалась в равновесие. Статья  опубликована в журнале Scientific Reports. Пена — это жидкая или твердая среда с большим количеством пузырьков газа. На первый взгляд пена не кажется чем-то необычным, она встречается в еде и напитках, косметике, строительных материалах. Но с точки зрения физики пена обладает уникальными механическими свойствами. В ней сочетаются эластичность, свойственная твердым материалам, и текучесть, характерная для жидкостей. Эластичность и текучесть — макроскопические свойства, но они определяются микроскопическими параметрами. Чтобы понять, как ведет себя пена в разных условиях, и эффективно использовать ее в промышленности, нужно изучить мельчайшие пузырьки: их количество, размеры, перемещение при деформации.

Читать далее

Вселенная внутри вселенной: размышления о структуре бытья и масштабах космоса

Фото: на каком изображен мозг, а на каком вселенная? Наука не враг духовности, напротив: научное знание — глубочайший источник духовного. Когда мы осознаем свое место в бесконечности световых лет и сменяющих друг друга эпох, когда постигаем красоту, тонкость и сложность жизни, нас охватывает восторг, в котором гордость сочетается со смирением — это ли не парение духа! — Карл Саган, «Мир, полный демонов: Наука — как свеча во тьме». Во время изучения Вселенной я ощущал подобные духовные моменты, описанные Саганом – когда укреплялось моё понимание связей с обширным миром. Как, к примеру, в тот раз, когда я впервые узнал, что буквально состою из пепла звёзд – что атомы моего тела распространились по бесконечному эфиру благодаря сверхновым. В другой раз я ощутил это возвышенное чувство, впервые увидев это изображение. Нейрон в мозге сопоставим со скоплениями галактик и соединяющими их нитями из обычной и тёмной материи. Их схожесть видна сразу. Что это означает? У вас в голове может существовать целая вселенная. Но схожесть изображений может оказаться и примером апофении – восприятия схожести там, где её нет. Ведь как две этих системы могут быть похожими, учитывая огромную разницу в их масштабах?

Читать далее

Почему в основе геологической науки лежат кубы: рассказ о создании масштабной теории об устройстве мира

Упражнения в чистой математике привели к созданию масштабной теории об устройстве мира. Где-то в середине лета 2016 года венгерский математик Габор Домокош взошёл на крыльцо дома Дугласа Джерольмака, геофизика из Филадельфии. С собой у Домокоша были дорожные чемоданы, сильная простуда и жгучая тайна. Чуть позже двое мужчин гуляли по гравийной дорожке на площадке за домом, где жена Джерольмака держала тележку для продажи тако. Под их ногами хрустел измельчённый известняк. Домокош указал под ноги. «Сколько граней у каждого из этих камушков?» – спросил он. Затем он ухмыльнулся. «Что, если я скажу вам, что их количество обычно равно шести?» А затем он задал ещё более общий вопрос, который, как он надеялся, надолго поселится в мозге его коллеги. Что, если мир состоит из кубов? Джерольмак сначала возразил: может, дома и строятся из кирпичей, но Земля состоит из камней. А форма у камней, очевидно, разная. Слюда крошится на чешуйки, кристаллы ломаются по жёстко определённым осям. Однако Домокош утверждал, что из одной лишь чистой математики следует, что любые камни, ломающиеся случайным образом, будут порождать формы, имеющие в среднем по шесть граней и восемь вершин.

Читать далее

Притягивание льдинки к воде объяснили переносом заряда из-за температурного градиента в льдинке

Иллюстрация: Ranit Mukherjee et al. / American Chemical Society Nano, 2021. Американские физики объяснили притягивание льдинки к воде — все дело оказалось в переносе заряда из-за температурного градиента в льдинке. За несколько миллисекунд отрицательно заряженная крошечная льдинка преодолевала расстояние в 5 миллиметров с максимальной скоростью в 0,9 метра в секунду. Результаты исследования, опубликованные в журнале American Chemical Society Nano, помогут описать образование молний и развить электростатическое удаление льда. Если поднести заряженный предмет (например, расческу после причесывания) к струе воды, то она отклонится. Так проявляется дипольная природа молекул воды, которые стремятся выстроиться вдоль электрического поля. Даже если столкнуть или потереть льдинки друг с другом — из-за контактной разности потенциалов на каждой из них появится заряд. Продувание обледеневших поверхностей потоком воздуха или приложение внешнего электрического поля позволило наблюдать заряженные льдинки микрометрового размера.

Читать далее

Создан стабильный при комнатной температуре магнонный кристалл времени с периодической структурой

Иллюстрация: Joachim Grafe et al. / Physical Review Letters, 2021. Физики создали магнонный кристалл, обладающий периодической структурой во времени. Для этого они использовали пластинку из ферромагнитного пермаллоя, помещенную в электромагнитное поле. Это первый временной кристалл микрометрового масштаба, созданный при комнатной температуре. Динамику магнонов в нем удалось заснять на видео с помощью рентгеновского микроскопа. Статья опубликована в журнале Physical Review Letters. Не любое твердое вещество можно назвать кристаллом, эти структуры обладают отличительным свойством — периодичностью. То есть решетка кристалла повторяется через строго определенные расстояния. Такая неоднородность является нарушением пространственной симметрии. В 2012 году физик-теоретик Фрэнк Вильчек предположил, что могут существовать кристаллы, нарушающие симметрию не пространства, а времени. Он представлял себе их как системы, которые пульсируют в состоянии равновесия, периодически возвращаясь в одну и ту же конфигурацию.

Читать далее