Обнаружено аномальное поведение вязких жидкостей в супергидрофобных капиллярах

Физики обнаружили, что под действием силы тяжести вязкие жидкости быстрее текут по супергидрофобному капилляру, чем менее вязкие, что противоречит известным всем специалистам и научному миру классическим гидродинамическим уравнениям. Оказалось, что дело в круговом потоке внутри капли, который разрушает воздушный зазор между жидкостью и стенкой капилляра. Повышение же вязкости, в свою очередь, подавляет внутренние течения. Статья опубликована в журнале Science Advances.  Вязкость — это способность жидкости сопротивляться течению. Чем жидкость более вязкая, тем труднее ее прокачать по трубам, а значит, возникает необходимость применять более мощные насосы и более крепкие трубы, рассчитанные на повышенное давление. Помимо снижения вязкости, ток жидкости можно улучшить при помощи супергидрофобной поверхности. Такие поверхности не смачиваются водой: капли на них остаются лежать в виде шарика. Между шершавой гидрофобной поверхностью определенного вида и жидкостью возникает воздушный зазор — пластрон, который уменьшает площадь контакта двух сред и облегчает протекание.

Читать далее

Показана возможность улучшения рентгеновского изображения с помощью квантовой корреляции

Физики впервые продемонстрировали улучшение параметров рентгеновских изображений при помощи квантовых эффектов. В частности, ученым удалось увеличить видимость и отношение сигнала к шуму с использованием небольшого количества фотонов в условиях высокой засветки. Исследователи планируют добиться полноценной запутанности между фотонами рентгеновского диапазона, что позволит реализовать принципиально новые эксперименты в области квантовой оптики, пишут авторы в журнале Physical Review X. Развитие технологий в последние десятилетия поспособствовало появлению направления физики под названием квантовая оптика — она посвящена исследованию оптических явлений, в которых проявляются квантовые свойства. Квантовая оптика работает с любым диапазоном света, а не только с видимым. С одной стороны, увеличение частоты (сокращение длины волны) усиливает связанные с квантовой природой свойства частиц, с другой — различные технические ограничения не позволяют двигаться ко все большим энергиям отдельных фотонов.

Читать далее

Разработан новый высокопроизводительный метод проверки графа на планарность: простое решение с огромной производительностью

Два специалиста по информатике нашли в весьма неожиданном месте идею, которая как раз пригодилась им для прорыва в теории графов.  октябре 2019 Якоб Хольм и Ева Ротенберг пролистывали новую работу, опубликованную ими за несколько месяцев до этого – и вдруг поняли, что наткнулись на нечто серьёзное. Десятилетиями специалисты по информатике пытались разработать быстрый алгоритм для определения того, можно ли добавить к определённому графу рёбра так, чтобы он остался «планарным» – то есть, чтобы его рёбра не пересекались. Однако ни у кого не получалось улучшить алгоритм, опубликованный более 20 лет назад. Хольм и Ротенберг с удивлением обнаружили, что в их работе есть идея, позволявшая достаточно сильно улучшить этот алгоритм. Она «разобралась с одним из главных препятствий на пути к реальному алгоритму», — сказал Хольм, специалист по информатике из Копенгагенского университета. «Возможно, мы полностью раскрыли этот вопрос». Парочка поспешила приступить к работе над новой статьёй. Они представили её в июне на симпозиуме по вычислительной теории, проводимом Ассоциацией вычислительной техники, где подробно описали метод проверки графа на планарность, превосходящий предыдущий вариант экспоненциально.

Читать далее

Из истории теоретической физики или как нам удалось анализировать макрообъекты без погружения на молекулярный уровень их строения

Перенормировка, возможно, оказалась самым важным прорывом в теоретической физике за последние 50 лет. Не нужно анализировать поведение отдельных молекул воды, чтобы понять поведение капель, или анализировать капли, чтобы понять волны. Возможность переключать фокус между разными масштабами – это и есть суть перенормировки. В 1940-х годах физики-первопроходцы наткнулись на новый слой реальности. Место частиц заняли поля – всеобъемлющие и волнующиеся сущности, заполнявшие всё пространство на манер океана. Одна небольшая рябь в таком поле могла обозначать электрон, другая – фотон, а их взаимодействия, судя по всему, могли объяснить все электромагнитные явления. Была только одна проблема – вся эта теория держалась на надеждах и молитвах. Только при помощи такой техники, как “перенормировка“, позволявшей тщательно скрывать бесконечные величины, исследователи могли обойти бессмысленные предсказания этой теории. Схема работала, но даже те, кто разрабатывал эту теорию, подозревали, что она может оказаться карточным домиком, держащимся за счёт извращённого математического трюка.

Читать далее

Невозможные события и их математическая интерпретация: иллюзия возможностей и реальность

Математики давно пытаются привыкнуть к тому, что некоторые задачи в принципе невозможно решить. Мы любим повторять, что всё возможно. В книге Джастера Нортона «Мило и волшебная будка» король отказывается сообщить Мило, что его цель недостижима, поскольку «многое становится возможным, если не знаешь, что оно невозможно» [правда, это слова других персонажей книги / прим. перев.]. Но в реальном мире некоторые вещи и вправду невозможны, и мы можем доказать это при помощи математики. Люди используют термин «невозможно» разными способами. Он может описывать просто маловероятные вещи – такие, как найти две одинаковых колоды перемешанных карт. Он может описывать задачи, практически невозможные по причине отсутствия времени, места или ресурсов – такие, как переписать всю Библиотеку Конгресса от руки. Устройства типа вечного двигателя невозможны физически, поскольку их существование противоречило бы нашему пониманию физики. Математическая невозможность – это другое. Мы начинаем с недвусмысленных предположений, и, используя математические рассуждения и логику, заключаем, что некоторые исходы событий невозможны.

Читать далее

Научные версии возникновения сверхпроводимости в теории и эксперименте: кратко о главном

Есть такое природное явление, которое ученые называют сверхпроводимостью, а инженеры — «будущим энергетики, медицины, скоростного транспорта и военного дела». Несмотря на то, что первые сверхпроводящие материалы были открыты более ста лет назад, применять их научились сравнительно недавно и лишь в нескольких довольно специфических приборах вроде Большого адронного коллайдера или в магнитно-резонансной томографии. Почему? Потому что мы до сих пор не до конца понимаем, как это явление работает. В новом материале мы постарались максимально коротко и просто рассказать о нескольких научных версиях возникновения сверхпроводимости, разобравшись с которыми вы поймете, над чем вот уже столетие ломают голову физики всего мира. Так что же такое сверхпроводимость? Это свойство некоторых веществ обладать строго нулевым сопротивлением ниже определенной температуры — ее называют критической.

Читать далее