Найдут ли акустические левитаторы применение для лабораторного и промышленного оборудования?

Исследователи из известного английского Университета, находящегося в Бристоле предложили простой и весьма эффективный прибор в виде акустического левитатора, который способен при помощи единственного ультразвукового излучателя поднимать и устойчиво удерживать в воздухе объекты достаточно большой длины и массы. По сообщениям исследователей, они смогли выполнить демонстрационный эксперимент и добиться результата, благодаря созданию акустического вихря, который заставил взлететь и удерживаться над поверхностью излучателя шар диаметром полтора сантиметра. Если вы не в курсе, то раньше длина волны была принципиальным, фундаментальным ограничением для однолучевых акустических левитаторов. Ещё раньше проблемой было само создание левитатора, использующего один луч.

Для получения эффекта применяли два источника ультразвука. Тема показалась мне интересной и значимой. Под катом подробнее об акустической левитации объектов и исследовании британцев.

Несколько слов об акустической левитации

Вики определяет акустическую левитацию, как “устойчивое положение весомого объекта в стоячей акустической волне.” Это явление известно с 1934 года, когда его теоретически доказал Л.Кингом, позже в 1961 г. выводы о возможности явления сделаны Л.П.Горьковым.

Суть принципа, на котором работают акустические левитаторы, заключается в создании интерференции когерентных звуковых волн, которая приводит к возникновению локальных областей повышения давления. Благодаря этому тело может удерживаться в той или иной области пространства, а также перемещаться.

Ученые, которые занимаются темой акустической левитации, верят в большое будущее этого явления. Футуристические проекты предполагают подъем и перемещение различных объектов, оснащение левитаторами системы управления складами, применение в портах и на производствах. Однако до такой массы и размеров левитаторам пока очень далеко. Одна из областей, где такие устройства смогут проявить себя в ближайшее время — это фармакологические технологии, где для повышения степени очистки веществ существует необходимость в акустической левитации.

Лирическое отступление. В детстве, в далёких 90-х, мне доводилось играть в космическую цивилизационную стратегию Ascendancy. В ней планеты можно было оснащать т.н. tractor beam (захватным лучом), который был способен притягивать объекты из космоса. Удивился, когда дожил до момента изобретения похожего, пусть и миниатюрного, устройства.

Как размер перестал иметь значение

Ранние однолучевые акустические левитаторы разрабатывались различными учеными, в т.ч. Азьера Марцо (Asier Marzo) из Бристоля и бразильцем Марко Аурелио Бриццотти Андраде из университета Сан-Паулу. Они смогли добиться левитации объектов диаметром не более 4 миллиметра. Максимальный размер предметов, которые поднимал в воздух такой левитатор, должен был быть меньше длины стоячей волны.

На этот раз бристольские ученые смогли преодолеть это принципиальное ограничение, используя полусферическую форму устройства. Благодаря такой форме получилось создать акустические вихри, способные удержать крупный предмет. Новый сферический левитатор объединяет 192 ультразвуковых излучателя с частотой 40 кГц (длина волны при н.у. составляет 0,87 см). Излучатели смонтированы на внутренней поверхности сферы диаметром 192 мм.

Благодаря конструкции левитатора при излучении создаются несколько вихрей с одинаковой спиральностью и различными направлениями. В зоне их действия возникают локальные области высокого давления, удерживающие объект. Максимальный диаметр шара, который поднял в воздух бристольский аппарат — 1,6 см, что практически в 2 раза больше, чем длина волны, которую создает прибор. Также устройство способно изменять скорость вращения шарика, за счет изменения направления ультразвуковых вихрей.

Неожиданные двухмерные эффекты

Эксперименты ученых продемонстрировали, что при фиксации одной из координат (например, когда предмет находится на поверхности), левитатор новой конструкции способен захватывать и вращать объекты, превышающие длину волны в 5-6 раз. Этот эффект открывает новые возможности для применения устройств с акустическими вихрями. Предполагается их использование для создания центрифуг и лабораторных систем управления микро и макро частицами.

Итог

Успехи бристольской команды (Asier Marzo, Mihai Caleap и Bruce W. Drinkwater) показывают, что, вероятно, в ближайшем будущем акустические левитаторы будут применяться для создания лабораторного, а позже и промышленного оборудования.

Возможно, в обозримом будущем акустическая левитация сможет заменить магнитную, которая сегодня активно применяется для создания оригинального дизайна различных устройств, в том числе акустических систем и проигрывателей винила. Не исключено, что когда-нибудь человечество увидит и мощный акустический tractor beam (как в Ascendancy), способный фиксировать и перемещать действительно крупные объекты.

Авторы заявили об успешном эксперименте месяц назад на страницах Physical Review Letters. Подробные данные об исследовании также опубликованы здесь 

Картинки по запросу акустическая левитация