Объяснено аномальное поведение груза при его падении с ускорением большим ускорения свободного падения

Иллюстрация: Rod Cross / Physics Education, 2022. Австралийский физик подробно исследовали падение, которое происходит с ускорением большим, чем g. Для этого он численно решил нелинейное дифференциальное уравнение для падающего стержня, закрепленного с одного из концов шарниром. Оказалось, что для случая, когда закреплен нижний конец, его верхний конец ускоряется экспоненциально, а обгон свободного падения происходит только в выделенном диапазоне начальных углов. Исследование опубликовано в Physics Education. Свободное падение на Земле происходит с ускорением g, приблизительно равным 9,8 метр на секунду в квадрате. Интуитивно кажется, что, если не испытывать никаких дополнительных усилий, направленных вниз, падать быстрее g невозможно. Однако это справедливо только для точечных объектов. Еще полвека назад физики показали, что обогнать g возможно, если закрепить нижний конец стержня шарниром и позволить ему упасть на горизонтальную поверхность.

Вертикальное ускорение центра масс стержня будет меньше, чем g, однако точки вблизи его верхнего конца могут достигать в полтора раза большее ускорение. Позднее была предложена схема, в которой закреплялся уже верхний конец, а стержень отпускался из горизонтального положения. При этом любой объект, находящийся в состоянии покоя на дальнем конце стержня, сразу же начинает отставать от него, переходя в режим свободного падения. Несмотря на то, что этот феномен известен давно, ни в одной из посвященных ему работ не рассчитана зависимость угла поворота стержня от времени, а лишь записаны сами уравнения движения.

Род Кросс (Rod Cross) из Сиднейского университета решил закрыть этот пробел. Он численно решил динамические уравнения для обеих схем и выяснил, чем падение быстрее g в деталях отличается от свободного падения. Оказалось, что в первой схеме зависимость угла от времени описывается экспоненциальными или гиперболическими функциями.

Механическая модель однородного массивного стержня, закрепленного с одного из концов шарниром принципиально проста. Его падение описывается с помощью единственной координаты — угла. Второй закон Ньютона для вращательного движения стержня связывает его угловое ускорение с синусом угла между стержнем и вертикальной осью.

Получающееся дифференциальное уравнение оказывается нелинейным. Оно имеет решение, выраженное через эллиптические функции Якоби, что довольно трудно анализировать в явном виде. Вместо этого математики часто прибегают к приближенным решениям через ряды Фурье или ряды Тейлора. Наиболее известным стало приближение малых углов применительно ко второй схеме, в котором синус угла заменяется самим углом, в этом случае решения представляют собой гармонические колебания маятника.

Вместо этого Кросс записал и численно решил нелинейное дифференциальное уравнение для обеих схем методом конечных разностей. В первом случае он увидел, что стержень, отпущенный из почти вертикального положения (один градус), ускоряется по закону, который с высокой степенью точности аппроксимируется экспоненциально. Увеличение начального угла потребовало обобщить эту зависимость до гиперболического косинуса. Во втором случае стержень разгоняется по параболическому закону.

Численные решения нелинейного дифференциального уравнения (черные точки) и соответствующие аппроксимации (красные линии) для схемы с закреплением стержня снизу (a) и сверху (b). Rod Cross / Physics Education, 2022

Особое внимание автор уделил первой схеме, ее еще называют перевернутым маятником. Интерес к перевернутым маятникам обусловлен прикладной задачей по поиску способа предотвратить падение стержня, перемещая шарнир некоторым образом. В отличие от второго случая, здесь обгон свободного падения концом стержня реализуется не всегда.

Физик следил за зависимостью от времени вертикальной координаты конца стержня и простого мяча для различных начальных углов. Он выяснил, что для стержня с параметрами, которые в гармоническом случае соответствовали бы циклической частоте равной восьми радианам в секунду, его конец будет всегда отставать от мяча при углах меньших 42 градусов. При больших углах мяч опережает конец в начале траектории, но затем тот его обгоняет. Наконец, для углов больше 55 градусов конец стержня ускоряется быстрее мяча в любой момент времени.

Сравнение ускорений свободно падающего мяча и конца стержня в первой схеме при различных стартовых углах. Rod Cross / Physics Education, 2022

Простые модели очень часто ведут себя математически сложно. Недавно в этом убедились физики, которые нашли фрактальные свойства в переноске чашки с кофе.

Автор: Марат Хамадеев
Источник: https://nplus1.ru/

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!