Разработана высокоэффективная мембрана для получения электричества из соленой воды

Устройство способно превратить 35,7% химической энергии, хранящейся в соленой воде, в пригодное для использования электричество. Это такой же эффективный источник электроэнергии, как ветровые турбины, и эффективнее, чем большинство солнечных батарей, сообщают ученые в Science Advances. Природа любит баланс и стремится уравновесить непропорциональные части системы. Примером этому может послужить такой процесс, как осмос. Если в одной части системы раствор содержит больше каких-то элементов и веществ, чем в другой, то в первую поступает растворитель (как правило, вода), чтобы уравнять концентрацию веществ с обеих сторон. Здесь есть две особенности: процесс проходит в одностороннем порядке и способствует этому естественная мембрна, которая пропускает растворитель. Осмос помогает, например, растениям впитывать влагу: корни «собирают» ее, а клетки растения не выпускают обратно. Этот же процесс используют ученые для создания скоростной линии электросети, которая получает ток из соленой воды.

Картинки по запросу high-performance and sustainable power generator osmos

Когда ионная решетка солей, состоящая из пучков положительно и отрицательно заряженных частиц, растворяется в воде, пучки разрываются, оставляя частицы свободными для участия в осмосе.

Если между соленой и пресной водой расположить заряженные тонкие мембраны, то частицы будут перетекать с одной стороны на другую, уравновешивая количество положительных и отрицательных зарядов. Благодаря этому возникает электрический ток. Мембраны для такого процесса уже используются, но они дорогостоящие и с течением времени имеют тенденцию к протеканию. Это позволяет частицам пройти обратно в неправильном направлении, уменьшая количество электричества, которое они могут произвести.

Исследователи из Китая создали новую, двухслойную мембрану, которая обладает разными свойствами с обеих сторон: начиная от размера пор до заряда самой мембраны. Каждый слой пропускает частицы с определенным зарядом. Это стимулирует постоянный поток заряженных частиц с одной стороны на другую, не позволяя им дрейфовать назад в неправильном направлении. Новые мембраны были названы в честь двуликого Януса, древнеримского бога дверей, входов и выходов.

Справка:

Явление осмоса используется в промышленных масштабах уже более 40 лет. Только это не классический прямой осмос аббата Нолле, а так называемый обратный осмос – искусственный процесс проникновения растворителя из концентрированного в разбавленный раствор под действием давления, превышающего естественное осмотическое давление. Такая технология применяется в опреснительных и очистительных установках с начала 1970-х. Соленая морская вода нагнетается на специальную мембрану и, проходя через ее поры, лишается значительной доли минеральных солей, а заодно бактерий и даже вирусов. Для прокачивания соленой или загрязненной воды приходится затрачивать большие объемы энергии, но игра стоит свеч – на планете существует множество регионов, где дефицит питьевой воды является острейшей проблемой.

Трудно поверить, что одна лишь разница в концентрации двух растворов способна создать серьезную силу, однако это действительно так: осмотическое давление может поднять уровень морской воды на 120 м.

Принципиальная схема осмотической энергоустановки

Опыты по превращению осмотического давления в электрическую энергию проводились различными научными группами и компаниями с начала 1970-х. Принципиальная схема этого процесса была очевидной: поток пресной (речной) воды, проникающий сквозь поры мембраны, наращивает давление в резервуаре с морской водой, тем самым позволяя раскручивать турбину. Затем отработанная солоноватая вода выбрасывается в море. Проблема была лишь в том, что классические мембраны для PRO (Pressure retarded osmosis) были слишком дороги, капризны и не обеспечивали необходимой мощности потока. С мертвой точки дело сдвинулось в конце 1980-х, когда за решение задачи взялись норвежские химики Торлейф Хольт и Тор Торсен из института SINTEF.

Осмотическая установка

На схематичных изображениях осмотическую мембрану рисуют в виде стенки. На самом деле она представляет собой рулон, заключенный в цилиндрический корпус. В его многослойной структуре чередуются слои пресной и соленой воды.

Схема осмотической установки

Мембраны Лоэба требовали клинической чистоты для поддержания максимальной производительности. Конструкция мембранного модуля опреснительной станции предусматривала обязательное наличие первичного фильтра грубой очистки и мощного насоса, сбивавшего мусор с рабочей поверхности мембраны.

Хольт и Торсен, проанализировав характеристики большинства перспективных материалов, остановили свой выбор на недорогом модифицированном полиэтилене. Их публикации в научных журналах привлекли внимание специалистов из Statcraft, и норвежских химиков пригласили продолжить работу под покровительством энергетической компании. В 2001 году мембранная программа Statcraft получила государственный грант. На полученные средства была построена экспериментальная осмотическая установка в Сунндальсьоре для тестирования образцов мембран и обкатки технологии в целом. Площадь активной поверхности в ней была чуть выше 200 м2.

Разница между соленостью (по-научному – градиент солености) пресной и морской воды – базовый принцип работы осмотической электростанции. Чем она больше, тем выше объем и скорость потока на мембране, а следовательно, и количество энергии, вырабатываемой гидротурбиной. В Тофте пресная вода самотеком поступает на мембрану, в результате осмоса давление морской воды по ту сторону резко возрастает. Силища у осмоса колоссальная – давление может поднять уровень морской воды на 120 м.

Далее полученная разбавленная морская вода устремляется через распределитель давления на лопатки турбины и, отдав им всю свою энергию, выбрасывается в море. Распределитель давления отбирает часть энергии потока, раскручивая насосы, закачивающие морскую воду. Таким образом удается значительно повысить эффективность работы станции. По оценке Рика Стовера, главного технолога компании Energy Recovery, производящей такие устройства для опреснительных заводов, КПД передачи энергии в распределителях приближается к 98%. Точно такие же аппараты при опреснении помогают доставлять питьевую воду в жилые дома.

Как замечает Скиллхаген, в идеале осмотические электростанции нужно совмещать с опреснительными установками – соленость остаточной морской воды в последних в 10 раз выше естественного уровня. В таком тандеме эффективность выработки энергии возрастет не менее чем вдвое.

Строительные работы в Тофте начались осенью 2008 года. На территории завода по производству целлюлозы компании Sódra Cell был арендован пустующий склад. На первом этаже устроили каскад сетчатых и кварцевых фильтров для очистки речной и морской воды, а на втором – машинный зал. В декабре того же года был осуществлен подъем и монтаж мембранных модулей и распределителя давления. В феврале 2009-го группа водолазов проложила по дну залива два параллельных трубопровода – для пресной и морской воды.

Забор морской воды осуществляется в Тофте с глубин от 35 до 50 м – в этом слое ее соленость оптимальна. Кроме того, там она значительно чище, чем у поверхности. Но, несмотря на это, мембраны станции требуют регулярной чистки от забивающих микропоры органических остатков.

С апреля 2009 года электростанция эксплуатировалась в пробном режиме, а в ноябре, с легкой руки принцессы Метте-Марит, была запущена на всю катушку. Скиллхаген уверяет, что вслед за Тофте у Statcraft появятся и другие аналогичные, но более совершенные проекты. И не только в Норвегии. По его словам, подземный комплекс размером с футбольное поле способен бесперебойно снабжать электричеством целый город с 15 000 индивидуальных домов. Причем, в отличие от ветряков, такая осмотическая установка практически бесшумна, не изменяет привычный ландшафт и не влияет на здоровье человека. А о пополнении запасов соленой и пресной воды в ней позаботится сама природа.

Источники: https://scientificrussia.ru/https://energoworld.ru/

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!