Палитра наноразмерной архитектуры поверхностей: почему там нет красного цвета?

Многие считают, что основными инструментами художника являются кисточка, мольберт и палитра. Однако это лишь средства, позволяющие использовать истинный инструмент — цвет. Наш мир полон красок всех мастей, от огненно-красного до морозно-синего. Цвет предметов и окрас живых организмов является результатом ряда физических и/или химических процессов. Учитывая разнообразие цветов, порой сложно понять разницу в механизмах их происхождения. Ученые из Кембриджского университета решили выяснить, почему структурные цвета, зависящие от наноразмерной архитектуры поверхностей, а не от химических пигментов, не бывают красных оттенков, а лишь синих или реже зеленых. В чем секрет такого цветового ограничения и как именно удалось установить истину? Пролить свет на эти вопросы нам поможет доклад ученых. Поехали. Вначале об основе исследования. Структурный цвет является результатом интерференции света, который рассеивается наноразмерными непоглощающими элементами поверхности. Это более физический процесс, нежели химический, как в случае с пигментацией, где цвет зависит от избирательного поглощения по длине волны.

Примеры структурных цветов в природе: А — гибискус тройчатый (Hibiscus trionum); В — жук тамамуси (Chrysochroa fulgidissima); С — бабочка вида Morpho rhetenor; D — комар обыкновенный (Culex pipiens); Е — морская мышь (Aphrodita aculeata); F — жук вида Pachyrhynchus argus; G — бабочка вида Parides sesostris

У структурных цветов имеется множество преимуществ по сравнению с пигментными:

  • не обесцвечиваются, так как цветообразование определяется архитектурой, а не составом;
  • могут быть изготовлены из экологически чистых материалов;
  • достигают нетрадиционных цветовых эффектов, от яркого металлического до изотропного оптического отклика.

Изображение №1

Учитывая положительные свойства структурных цветов, было разработано множество методик по их воссозданию, а точнее методик создания иерархических структур или структур ближнего упорядочения с независимыми от угла цветами. Результатом таких разработок стало фотонное стекло (PG от photonic glass), которое имеет биологический эквивалент в виде оперения многих птиц (изображение выше).

Нюанс в том, что в природе структурные цвета бывают лишь синих оттенков. Красные и зеленые цвета, как правило, достигаются с помощью структур с дальним упорядочением или с использованием пигментации. Конечно, существуют техники, позволяющие создать искусственный структурный красный оттенок. Однако, как заявляют авторы сего труда, оптические свойства у материала такого цвета крайне плохи.

Возникает вопрос — можно ли в принципе создать полноценный структурный красный цвет? Дабы ответить на этот вопрос, ученые решили использовать численный подход, который обеспечивает прямой доступ к спектру отражения произвольной структуры и позволяет исследовать промежуточные режимы рассеяния, то есть между однократным рассеянием и диффузионным поведением.

Результаты исследования

Для начала посредством численного алгоритма были созданы варианты фотонного стекла (прямое и инверсивное) с различными свойствами рассеивания и структурной корреляцией (структурным фактором*).

Структурный фактор* — математическое описание того, как материал рассеивает падающее излучение.

Следом были проведены расчеты оптических свойств сгенерированных структур с использованием метода конечных разностей во временной области. Созданная модель была намеренно ограничена двумерным пространством, так как подобные структуры чаще всего встречаются в природе (изображение выше). Концентрация внимания на двумерной структуре также позволяет расширить спектр изучаемых параметров, при этом ограничивая вычислительные затраты. Тем не менее ученые уверены, что полученные результаты можно применить и для описания трехмерных структур.

Если поглощение отсутствует, то рассеяние в фотонном стекле возникает в результате взаимодействия между характеристиками индивидуальных частиц (размер, форма и показатель преломления) или за счет взаимодействия между свойствами группы частиц (доля заполнения и структурные корреляции).

Изображение №2

В случае прямых PG в отражении преобладают резонансы Ми*, определяемые свойствами рассеивателя (). Таким образом, отраженный цвет можно изменить на видимый, изменив размеры рассеивателя.

Резонанс Ми* — увеличение интенсивности рассеянного на сферической частице излучения для определенных длин волн, сравнимых с размерами частицы (назван в честь Густава Ми, 1868-1957).

Однако по мере увеличения размера частиц пик резонанса Ми смещается в красную сторону, и второй пик появляется в синей части спектра, что соответствует резонансной моде более высокого порядка. А вот в рассеянии света в инверсивных PG преобладают структурные корреляции (2B). Пик отражения, положение которого хорошо соответствует предсказаниям закона Брэгга*, более выражен, чем в прямых структурах.

Дифракция Брэгга* — явление сильного рассеяния волн на периодической решетке рассеивателей при определенных углах падения и длинах волн.

Формула закона Брэгга: nλ = 2d · sin θ, где d — период решетки; θ — угол падения волны; λ — длина волны излучения; n — число волн.

Появление отдельного пика в видимом спектре демонстрирует, что использование инверсных PG является эффективной стратегией для минимизации форм-фактора в общем оптическом отклике системы в пользу структурных вкладов.

Зависимость изотропного структурного цвета от показателя преломления для прямого (сверху) и инверсивного (снизу) PG соответственно.

Изменение показателя преломления влияет на взаимосвязь между вкладами формы и структуры. В системах с высоким показателем преломления преобладают резонансы форм-фактора, которые не позволяют им достичь хорошей чистоты цвета в красной области спектра как для прямых, так и для инверсных PG. Для прямых систем, даже когда контраст показателя преломления низкий, резонансы форм-фактора приводят к усиленному отражению на коротковолновой стороне структурного пика. Напротив, в случае инверсивных PG видно, что структурный фактор формирует хорошо разделенный пик в видимом спектре, даже в красной области длин волн.

Из этого следует вывод, что инверсивные PG с низким показателем преломления могут превосходить прямые PG с точки зрения чистоты цвета и насыщенности.

Изображение №3

Уменьшение контраста показателя преломления между матрицей рассеяния (nm) и центрами рассеяния (np) может еще больше способствовать структурному вкладу. На  видно, что увеличение np приводит к широкополосному снижению коэффициента отражения и красному смещению структурного пика. Структурный пик уменьшается по ширине и имеет более высокую интенсивность по сравнению с его фоном, что приводит к лучшей чистоте цвета.

Уменьшение контраста показателя преломления снижает роль многократного рассеяния, которое так или иначе присутствует в неупорядоченных системах. Это ограничивает изотропные структурные цвета режимом распространения света между диффузным рассеянием* и баллистическим переносом*.

Диффузное рассеяние* — рассеяние, возникающее в результате любого отклонения структуры материала от структуры идеально правильной решетки.

Баллистический перенос* — беспрепятственный поток носителей заряда (обычно электронов) или несущих энергию частиц на относительно большие расстояния в материале.

Многократное рассеяние становится преобладающим при увеличении толщины образца, что приводит к широкополосному ненасыщенному отклику.

Соответствующие наблюдения также можно применить и к рассеивателям со сложной геометрией. Как уточняют ученые, в их предыдущих работах была представлена ​​идея использования частиц ядро-оболочка* для разделения вкладов форм-фактора и структурного фактора и достижения отдельного пика в длинноволновой области спектра.

Частица ядро-оболочка* — частица, ядро и оболочка которой отличаются по составу, морфологии и функциональному назначению.

На изображении  показано, что уменьшение размера центра рассеяния (ядра) при сохранении длины структурной корреляции приводит к увеличению интенсивности и ширины длинноволнового (структурного) пика. В то же время коротковолновый вклад резонансов Ми смещается в сторону ультрафиолета.

На  показано, что пониженный контраст показателя преломления может подавить многократное рассеяние, в то время как разделение вкладов форм-фактора и структурного фактора возможно через частицы ядро-оболочка ().

Объединение обоих методов показано на . Это позволяет получить более высокие значения чистоты и насыщенности цвета за счет хорошо разделенных пиков в длинноволновой части видимого спектра.

На следующем этапе исследования ученые уделили внимание оценке насыщенности и чистоты цвета. Для количественной оценки этих параметров спектры отражения прямых, инверсивных PG и ядер-оболочек были преобразованы в цветовые оттенки. Чистоту цвета можно определить как нормализованное расстояние от белой точки на диаграмме цветности по отношению к красной точке (в случае красных цветов). Насыщенность количественно определяет, насколько интенсивность отраженного света распределяется по спектру с разными длинами волн.

Изображение №4

На 4A различные системы для оттенков красного нанесены на диаграмму цветового пространства CIE XYZ. На 4В вычислены соответствующие значения чистоты и насыщения.

Стоит отметить, что все инверсивные PG демонстрируют более высокие значения чистоты и насыщенности цвета, чем красные оттенки прямых PG. Однако включение в систему частиц ядро-оболочка не приводит к значительному улучшению по сравнению со стандартным инверсивным PG. Если же объединить оба подхода, то можно получить более высокие показатели чистоты и насыщенности. Тем не менее они будут гораздо ниже, чем у реального красного цвета (т.е. из модели КЗС — красный, зеленый, синий).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог

В данном труде ученым удалось продемонстрировать, что фотонные стекла имеют внутренние ограничения в достижении насыщенных красных оттенков. Это обусловлено взаимодействием между резонансом, связанным со структурным фактором, рассеянием, связанным с форм-фактором, и фоном многократного рассеяния. Подобный фундамент позволяет легко достичь структурного цвета в УФ-синем диапазоне, но не в случае больших длин волн.

Также было доказано, что высокая чистота и насыщенность цвета для красных оттенков не могут быть достигнуты в изотропных структурах ближнего упорядочения, даже в случае сложных морфологий рассеивателя.

По словам ученых, подобные наблюдения могут свидетельствовать о том, что природа была вынуждена (образно выражаясь) создать альтернативные пути формирования красных оттенков (например, многослойные или алмазные структуры).

Объединение нескольких подходов по созданию структурного цвета красных оттенков может улучшить показатели чистоты и насыщенности, но их все же недостаточно для достижения реального красного цвета.

Также было установлено, что из-за сложного взаимодействия между однократным и многократным рассеянием, желтый и оранжевый, помимо красного, также сложно получить в аспекте структурных цветов.

Подобные исследования позволяют лучше понять структурные цвета, а также выработать новые методики по созданию материалов, способных быть основой для тех оттенков, что не встречаются в естественных структурных цветах. Помочь в этом, по мнению авторов исследования, могут новые типы наноструктур (например, сетевые или многослойные иерархические структуры).

Как бы то ни было, работа над структурными цветами будет продолжаться и дальше. Современные методики изучения наноразмерных структур и средства их воссоздания позволяют детальнее описать процессы, протекающее в материале, что, естественно, способствует достижению контроля над этими процессами.

Автор:
Источник: https://habr.com/

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!