Впервые удалось получить сверхпроводник, являющийся источником магнитного поля

На иллюстрации: Структура собственного магнитного поля и токов, которые возникают в сверхпроводнике при переходе вещества в особое квантовое состояние. Vadim Grinenko et al. / Nature Physics, 2020. Физики в своем исследовании экспериментально обнаружили новое квантовое состояние сверхпроводника, в котором материал становится источником магнитного поля. Достигнутый результат важен как с точки зрения фундаментальной науки, так и для разработки сверхпроводящих устройств. Статья опубликована в журнале Nature Physics. Сверхпроводимость — это явление, при котором электрическое сопротивление материала становится строго нулевым. Переход образца в такое состояние происходит при охлаждении ниже критической температуры — она определяется свойствами вещества. В настоящее время сверхпроводимость широко применяется в технике, однако полного теоретического описания этого явления ученые до сих пор не разработали (подробнее о сверхпроводимости и существующих объяснениях можно узнать в нашем материале). Квантовые свойства сверхпроводника делают его идеальным диамагнетиком — материалом, которому энергетически выгодно иметь нулевое внутреннее магнитное поле.

Эффект Мейснера — Википедия

Выталкивание магнитного поля из сверхпроводника

В результате сверхпроводимость и магнетизм становятся конкурентами: обычно они проявляются только по отдельности, а для совместного их возникновения нужно поддерживать специальные условия. Ученые из шести стран под руководством Вадима Гриненко (Vadim Grinenko) из Института физики твердого тела и исследования материалов Ассоциации Лейбница в Дрездене экспериментально изучили сверхпроводимость в кристалле Ba1−xKxFe2As2. Авторы исследовали образцы с различным содержанием примесей калия и бария (в химической формуле их определяет параметр х), и следили за тем, как состав материала влияет на его сверхпроводящие и магнитные особенности.

Для анализа этих свойств физики облучали кристаллы поляризованным (то есть обладающим заданной ориентацией магнитных моментов) пучком положительно заряженных мюонов и детектировали частицы, которые рождались при взаимодействии этого пучка с образцом. Такие измерения позволили исследователям понять, как именно материал воздействовал на магнитные моменты частиц, и, таким образом, определить его магнитную структуру.

В результате физики установили, что при достаточно большом относительном содержании калия (x>0.7) и низкой температуре (около 10 К) материал переходит в особое квантовое состояние, в котором начинает генерировать собственное магнитное поле. Таким образом, ученые обнаружили ранее неизвестный механизм сосуществования магнетизма и сверхпроводимости. Это открытие порождает новое направление для экспериментальных и теоретических исследований и в будущем может найти применение при разработке сверхпроводящих устройств. Кроме того, авторы выявили связь между условиями, которые приводили к возникновению обнаруженного состояния, и условиями Лифшиц-перехода — известного квантового превращения, меняющего энергетическую конфигурацию электронов. Последнее облегчит поиски подобных свойств у других кристаллов.

Ранее мы писали о том, как ученые предсказали возникновение сверхпроводимости при температуре 200 градусов Цельсия и как мюоны помогли измерить перепад потенциалов грозового облака величиной в миллиард вольт.

При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник отличается от идеального проводника, у которого при падении сопротивления до нуля индукция магнитного поля в объёме должна сохраняться без изменения.

Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля, что в нём существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри сверхпроводника внешнее магнитное поле. В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.

Автор: Николай Мартыненко
Источник: https://nplus1.ru/

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!