Нитевидные кристаллы – удивительные объекты микро и наномира, обладающие часто уникальными физическими и физико – химическими характеристиками. Один из примеров таких кристаллов (вискеров) легко получить в обычных лабораторных условиях, при этом они обладают туннельной кристаллической структурой и могут быть использованы для ионного обмена и для создания электрохимических интеркалляционных устройств. Получение «усов» сверхчистых металлов и алмаза, нитевидных кристаллов кремния или сверхпроводящих вискеров Bi2Sr2CaCu2O8 стало уже классикой современной химии функциональных материалов. Помимо фундаментально – интересных особенностей физических свойств такие материалы (волокна) представляют большой практический интерес (из-за их необычной формы), а также просто эстетически прекрасны.
А случалось ли Вам когда-нибудь видеть меховой «хвостик», выросший не на теле животного, а в тигле при температуре порядка 1000°C? (Рис.1.) Уникальной формой, которую очевидцы сравнивают в ватой, мехом или войлоком, обладают кристаллы каркасных фаз голландита Ba2-xMn8-yO16 и Ba6Mn24O48, полученные изотермическим испарением из расплава хлоридного флюса (KCl, NaCl или KCl/NaCl).
При детальном рассмотрении (Рис.2) было замечено, что вершины многих нитей имели утолщения, в 1.5-2 раза превышавшие их диаметр, что может быть связано с испарением расплава KCl (p(KCl)= 7.64 мм рт. ст. при 950°C) и одновременным транспортом летучего MnCl2 через газовую фазу к вершине растущего кристалла, на которой локализована пленка расплава нелетучего хлорида бария.
Этот процесс в литературе носит название роста кристаллов по механизму «Пар-Жидкость-Кристалл». Хотя в большинстве случаев «войлок» представляет собой смесь кристаллов обеих фаз, были найдены условия роста чистых кристаллов голландита и фазы Ba6Mn24O48 [1]. Опытный глаз даже в смеси может различить более тонкие, более «волосяные» кристаллы фазы Ba6Mn24O48 от более толстых, более «щетинистых» кристаллов голландита Ba2-xMn8-yO16.
Оригинальная кристаллическая структура выращенных вискеров манганитов сама по себе заслуживает восхищения. Каркас, состоящий из сочлененных различным образом структрурных блоков – октаэдров MnO6, образует туннели, в которых могут размещаться катионы других металлов. Если в структуре голландита имеется два типа туннелей: первые в сечении имеют форму квадрата, каждая сторона которого образована сочленением по ребрам двух октаэдров MnO6, и размещают один ряд катионов бария, а вторые образуются при сочленении туннелей первого типа и не заняты катионами бария; то Ba6Mn24O48характеризуется наличием трех типов туннелей.
Первый – голландитоподобные туннели, второй – рутилоподобные не занятые катионами бария туннели, кроме того, образуются туннели третьего типа сложной формы, размещающие два ряда катионов бария. В туннелях посленего типа катионы бария обладают собственной периодичностью, бариевая подрешетка является частично разупорядоченной и при переходе от туннеля к туннелю положение катионов бария может смещаться, что приводит к различной степени заселения туннелей.
Даже без знания всех этих особенностей кристаллической структуры одного взгляда на ее изображение достаточно, чтобы увидеть потенциал скрытых в ней возможностей практического применения. Ионный проводник, катодный материал, твердофазный злектролит, катализатор, а может, матрица для сохранения радиоактивных отходов – это только часть того, на что, вероятно, могут быть способны полученные волокна.
- Е.А.Гудилин, Е.А.Померанцева, О.Ю.Горбенко, В.В.Петрыкин, В.В.Полтавец, А.В.Кнотько, А.М.Абакумов, Н.Н.Олейников, Ю.Д.Третьяков, М.Какихана, (2000): Рост нитевидных кристаллов в системах M-Mn-O (M = Ba, Sr,Сa) с использованием хлоридных флюсов, ДАН, 2000, т.372, н.4-6, c.100-104.
- Ph.Boullay, M.Hervieu, B.Raveau, A New Manganite with an Original Composite Tunnel Structure: Ba6Mn24O48, .J. Solid State Chem. 132, 1997, 239-248.
Источник: http://www.nanometer.ru/
Автор: Гудилин Евгений Алексеевич