Зависит ли цвет наночастиц от их размера: краткий экскурс в оптические свойства наномира

В наномире изменяются многие механические, термодинамические и даже электрические характеристики вещества. Не являются исключением и их оптические свойства. Они тоже изменяются в наномире. Нас окружают предметы обычных размеров, и мы привыкли к тому, что цвет предмета зависит только от свойств вещества, из которого он сделан или красителя, которым покрашен. В наномире это представление оказывается несправедливым, и это отличает нанооптику от обычной. Лет 20-30 тому назад «нанооптики» вообще не существовало. Да и как могла быть нанооптика, если из курса обычной оптики следует, что свет не может “чувствовать” нанообъекты, т.к. их размеры существенно меньше длины волны света λ = 400 – 800 нм.

Картинки по запросу цвет наночастицы

Согласно волновой теории света нанобъекты не должны иметь тени, и свет от них не может отражаться. Сфокусировать видимый свет на площади, соответствующей нанообъекту, тоже нельзя. Значит, и увидеть наночастицы невозможно.

Однако, с другой стороны, световая волна всё-таки должна действовать на нанообъекты, как и любое электромагнитное поле. Например, свет, упав на полупроводниковую наночастицу, может своим электрическим полем оторвать от её атома один из валентных электронов.

Этот электрон на некоторое время станет электроном проводимости, а потом опять вернётся «домой», испустив при этом квант света, соответствующий ширине «запрещённой зоны» – минимальной энергии, необходимой для того, чтобы валентному электрону стать свободным (см. рис.1).

Рисунок 1. Схематическое изображение уровней энергии и энергетических зон электрона в полупроводнике. Под действием синего света электрон (белый кружок) отрывается от атома, переходя в зону проводимости. Через некоторое время он спускается на самый нижний энергетический уровень этой зоны и, испуская квант красного света, переходит обратно в валентную зону.

Таким образом, полупроводники даже наноразмеров должны чувствовать падающий на них свет, испуская при этом свет меньшей частоты. Другими словами, полупроводниковые наночастицы на свету могут становиться флуоресцентными, испуская свет строго опредёлённой частоты, соответствующей ширине «запрещённой зоны».

Светиться в соответствии с размером!

Хотя о флюоресцентной способности полупроводниковых наночастиц было известно ещё в конце XIX века, подробно это явление было описано лишь в самом конце прошлого века (Bruchez с сотр., Science, v. 281: 2013, 1998). И самое интересное, оказалось, что частота света, испускаемого этими частицами, уменьшалась с увеличением размера этих частиц (рис. 2).

Рисунок 2. Флюоресценция взвесей коллоидных частиц CdTe различного размера (от 2 до 5 нм, слева направо). Все колбы освещаются сверху синим светом одинаковой длины волны. Взято из H. Weller (Institute of Physical Chemistry, University of Hamburg).

Как показано на рис. 2, цвет взвеси (суспензии) наночастиц зависит от их диаметра. Зависимость цвета флюоресценции, т.е. её частоты, ν от размера наночастицы означает, что от размера частицы зависит также и ширина «запрещённой зоны» ΔЕ. Глядя на рисунки 1 и 2, можно утверждать, что при увеличении размеров наночастиц ширина «запрещённой зоны», ΔЕ должна уменьшаться, т.к. ΔЕ = hν. Такую зависимость можно объяснить следующим образом.

«Оторваться» легче, если вокруг много соседей

Минимальная энергия, необходимая для отрыва валентного электрона и перевода его в зону проводимости, зависит не только от заряда атомного ядра и положения электрона в атоме. Чем больше вокруг атомов, тем легче оторвать электрон, ведь ядра соседних атомов тоже притягивают его к себе. Этот же вывод справедлив и для ионизации атомов (см. рис. 3).

Рисунок 3. Зависимость среднего числа ближайших соседей по кристаллической решётке (ордината) от диаметра частицы платины в ангстремах (абсцисса). Взято из Frenkel с сотр. (J. Phys. Chem., B, v.105:12689, 2001).

На рис. 3. показано, как меняется среднее число ближайших соседей у атома платины при увеличении диаметра частицы. Когда число атомов в частице невелико, значительная их часть расположена на поверхности, а значит, среднее число ближайших соседей гораздо меньше того, которое соответствует кристаллической решетке платины (11). При увеличении размеров частицы среднее число ближайших соседей приближается к пределу, соответствующему данной кристаллической решётке.

Из рис. 3 следует, что ионизовать (оторвать электрон) атом тяжелее, если он находится в частице малых размеров, т.к. в среднем у такого атома мало ближайших соседей.

Рисунок 4. Зависимость потенциала ионизации (работы выхода, в эВ) от числа атомов N в наночастице железа. Взято из лекции E. Roduner (Stuttgart, 2004).

На рис. 4 показано, как изменяется потенциал ионизации (работа выхода, в эВ) для наночастиц, содержащих различное число атомов железа N. Видно, что при росте работа выхода падает, стремясь к предельному значению, соответствующему работе выхода для образцов обычных размеров. Оказалось, что изменение Авых с диаметром частицы можно довольно хорошо описать формулой:

Авых Авых0 + 2Ze2/D , (1)

где Авых0 – работа выхода для образцов обычных размеров, Z– заряд атомного ядра, а e– заряд электрона.

Очевидно, что ширина «запрещённой зоны» ΔЕ зависит от размеров полупроводниковой частицы таким же образом, как и работа выхода из металлических частиц (см. формулу 1) – уменьшается с ростом диаметра частицы. Поэтому длина волны флюоресценции полупроводниковых наночастиц растёт с ростом диаметра частиц, что и иллюстрирует рисунок 2.

Квантовые точки – рукотворные атомы

Полупроводниковые наночастицы часто называют «квантовыми точками». Своими свойствами они напоминают атомы – «искусственные атомы» имеющие наноразмеры. Ведь электроны в атомах, переходя с одной орбиты на другую, тоже излучают квант света строго определённой частоты. Но в отличие от настоящих атомов, внутреннюю структуру которых и спектр излучения мы изменить не можем, параметры квантовых точек зависят от их создателей, нанотехнологов.

Квантовые точки уже сейчас являются удобным инструментом для биологов, пытающихся разглядеть различные структуры внутри клеток. Дело в том, что различные клеточные структуры одинаково прозрачны и не окрашены. Поэтому, если смотреть на клетку в микроскоп, то ничего, кроме её краёв и не увидишь. Чтобы сделать заметной определённую структуру клетки, были созданы квантовые точки, способные прилипать к определённым внутриклеточным структурам (рис. 5).

Рисунок 5. Раскрашивание разных внутриклеточных структур в разные цвета с помощью квантовых точек. Красное – ядро; зелёные – микротрубочки; жёлтый – аппарат Гольджи.

Чтобы раскрасить клетку на рис. 5 в разные цвета, были сделаны квантовые точки трёх размеров. К самым маленьким, светящимся зелёным светом, приклеили молекулы, способные прилипать к микротрубочкам, составляющим внутренний скелет клетки. Средние по размеру квантовые точки могли прилипать к мембранам аппарата Гольджи, а самые крупные – к ядру клетки. Когда клетку окунули в раствор, содержащий все эти квантовые точки, и подержали в нём некоторое время, то они проникли внутрь и прилипли туда, куда могли. После этого клетку сполоснули в растворе, не содержащем квантовых точек, и положили под микроскоп. Как и следовало ожидать, вышеупомянутые клеточные структуры стали разноцветными и хорошо заметными (рис. 5).

Источник: http://www.nanometer.ru/
Автор: Богданов Константин Юрьевич

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!