4D-печать: путь к программируемой материи

Картинки по запросу 4d-печатьПочти три десятка лет развивалась технология 3D-печати, но только в 2013 году о ней заговорили во всем мире как о неком чудесном способе производства любых изделий – от деталей машин до человеческих органов. Ее логическим продолжением стала прорывная технология – 4D-печать на основе концепции программируемой материи (Programmable matter, РМ). Именно материи, а не материалов – так ее можно воспринимать, поскольку здесь просматривается переход в область философских категорий. 4D-печать способна возвести 3D-печать на совершенно новый уровень, вводя еще одно измерение самоорганизации – время.

Картинки по запросу 4d-печать

Развитие технологии в перспективе несет миру новые приложения во всех областях жизни, обеспечивая беспрецедентные возможности в преобразовании цифровой информации виртуального мира в физические объекты мира материального. Это – новая технология на уровне магии.

Программирование материи (ПМ) — объединение науки и технологии в деле создания новых материалов, которые приобретают общее, ранее невиданное свойство — изменять форму и/или свойства (плотность, модуль упругости, проводимость, цвет и т. д.) целенаправленным способом.

Пока разработка программируемой материи идет в двух направлениях:

  1. Изготовление изделий методами 4D-печати — печать заготовок на 3D-принтерах, а затем их самотрансформация под воздействием заданного фактора, например влаги, тепла, давления, тока, ультрафиолетового света или другого источника энергии (рис. 1 и 2).
  2. Изготовление вокселей (дословно — объемных пикселей) на 3D-принтерах, которые могут соединяться и разъединяться для формирования более крупных программируемых структур.

Для существования огромного биоразнообразия на нашей планете достаточно 22 строительных блоков — аминокислот. Поэтому животные и растения, потребляя друг друга, повторно используют фактически один и тот же биоматериал. Жизнь постоянно находится в процессе самовосстановления и самоорганизации.

Картинки по запросу 4d-печать

Такой подход к программированию материи имеет очень большой потенциал. Так, пиксель является элементарной единицей виртуального изображения объекта, а воксель может быть материальной единицей самого объекта в материальном мире. Оба они несут в себе аналогию с аминокислотой.

Элементарной единицей материи является атом, но элементарных единиц напечатанной и программируемой материи может быть намного больше и по составу, и по структуре, и по размеру. Как написали в своей новой книге Fabricated: The New World of 3D Printing Ход Липсон (Hod Lipson) и Мельба Керман (Melba Kurman): «Используя только два типа вокселей — жесткие и мягкие — можно создать самые разные материалы. Добавим к ним проводящие воксели, конденсаторы, резисторы и получим электронную плату. А включение активаторов и сенсоров уже даст нам робота».

Примеры 4D-печати

Агентство DARPA запустило программу разработки технологии программирования материи еще в 2007 году. Целью программы была разработка новых материалов и принципов их производства, наделение материалов совершенно новыми свойствами. Отчет DARPA под названием Realizing Programmable Matter представляет собой многолетний план для проектирования и построения микромасштабных роботизированных систем, которые способны превращаться в крупные военные объекты.

Примером подобных достижений является «миллимотеин» (механический белок), спроектированный и синтезированный в Массачусетском технологическом институте. Компоненты миллиметрового размера и моторизованная конструкция, созданные по аналогии с белками, позволили разработать систему, которая может самостоятельно складываться в сложную форму.

Картинки по запросу 4d-печать

Группа из Корнельского университета также разработала самореплицирующуюся и самостоятельно реконфигурирующуюся роботизированную систему. Позже, были построены системы микророботов (M-блоков), в которых отдельные М-блоки имеют способность самостоятельно передвигаться и перестраиваться внутри системы.

Еще одна технология 4D-печати предполагает непосредственное включение («впечатывание») проводников или проводящих частей во время печати задания в 3D. После того как объект напечатан, части могут быть активированы с помощью внешнего сигнала, чтобы запустить устройство в целом. Это подход с большим потенциалом в таких областях, как робототехника, строительство и изготовление мебели.

Другие 4D-технологии заключаются в использовании композитных материалов, которые способны приобретать различные сложные формы на основе разнообразия физико-механических свойств. Трансформация запускается потоком тепла или светом определенной длины волны.

Встраивание датчиков в напечатанные 3D-устройства также имеет большие перспективы. Путем вставки наноматериалов можно создать многофункциональные нанокомпозиты, которые способны изменять свойства в соответствии с изменением окружающей среды. Например, датчики могут быть встроены в медицинские измерительные приборы — тонометры (для измерения артериального давления), глюкометры (для измерения уровня сахара в крови) и т.д.

Запрограммированный и напечатанный мир будущего

Но все эти примеры относятся ко вчерашнему дню технологий. Усложнение отдельных узлов, использование альтернативных наноматериалов и сырья, а также различных источников активации (вода, тепло, свет и т. д.) — это уже пройденный этап.

Представьте себе мир, в котором материальные объекты — от крыльев самолета до мебели и зданий — могут менять форму или свойства по команде человека или запрограммированной реакции на изменение внешних условий, таких как температура, давление или ветер, дождь. В этом мире отпадает потребность в новом сырье — заготовке древесины, выплавке металлов, добыче угля и нефти. У производства будущего не будет отходов, не нужно заботиться о переработке пластика или сборе металлолома.

Новые материалы самопроизвольно или по команде будут распадаться на программируемые частицы или компоненты, которые затем можно повторно использовать для формирования новых объектов и выполнения новых функций.

Долгосрочный потенциал программируемой материи и технологии 4D-печати заложен в создании экологически более устойчивого мира, в котором меньше ресурсов потребуется для обеспечения продуктами и услугами растущего населения планеты.

Одним из перспективных направлений развития 4D-печати и программирования материи является разработка под конкретный заказ наборов из нескольких вокселей различных форм и с разными функциями, а затем их программирование для еще более специализированных приложений. Теоретически можно изготавливать воксели из металла, пластика, керамики или любого другого материала. Основные принципы такой технологии аналогичны функционированию ДНК и самоорганизации биологических систем.

История изобилует примерами новых технологий, нарушающих устои мировой торговли и геополитики (например, телеграф и Интернет). 3D-печать уже оказала свое влияние, а внедрение 4D-технологий будет иметь еще большие последствия.

Программируемая материя будет иметь широкий спектр применения и в военных целях. Военная промышленность США уже разрабатывает 3D-печать запчастей в полевых условиях, а также проектирует более дешевое, удобное и легкое «напечатанное оружие». Становятся ненужными транспортировка и хранения тысяч запчастей рядом с полем боя или на боевых судах. Достаточно «ведра вокселей», чтобы изготовить вышедшую из строя деталь, более того, на изготовление новых деталей можно будет пускать ненужные в данный момент объекты, ведь они сделаны из стандартных вокселей.

Итогом видится самотрансформирующийся на наноуровне робот, реализация которого настолько близка, что Терминатор уже не выглядит фантастикой.

Однако на пути к такому радужному будущему предстоит ответить на ряд вопросов:

Проектирование
Как программировать САПР для работы с программируемой материей, которая включает многомасштабные, многоэлементные компоненты, но самое главное — статические и динамические части?
Разработка новых материалов
Как создать материалы с многофункциональными свойствами и встроенными логическими возможностями?
Соединение вокселей
Как гарантировать надежность воксельных соединений? Она может быть сравнима с прочностью традиционных изделий, при этом позволяя реконфигурацию или вторичную переработку после использования?
Источники энергии
Какие методы использовать для генерации энергии в источниках, которые должны быть одновременно пассивными и очень мощными? Как хранить и использовать эту энергию для активации отдельных вокселей и всего программируемого материала изделия?
Электроника
Как эффективно встроить электронное управление или создать управляемые свойства самой материи в нанометровом масштабе?
Программирование
Как программировать и работать с отдельными вокселями — цифровыми и физическими? Как программировать изменение состояний?
Стандартизация и сертификация
Нужно ли разрабатывать специальные стандарты для вокселей изделий из ПМ?
Безопасность
Как гарантировать безопасность деталей и изделий из ПМ?

Угрозы и риски нового мира

Несмотря на то, что в целом для общества ПМ может иметь значительные преимущества, но, как и всякая новая технология, она вызывает определенные опасения. Интернет овладел всем миром, в итоге целые пласты деятельности масс вышли из-под контроля властей. Теперь представьте себе, что материальный мир можно изменять самыми непредсказуемыми способами, которые могут нести угрозу безопасности людей.

Картинки по запросу 4d-печать

Что ждет человека в мире программируемой материи? Что, если программа изменения крыльев самолета в воздухе может быть взломана, что приведет к катастрофе, запрограммированный материал зданий по команде разрушится, погребая внутри жителей. Следовательно, уже сейчас нужно задуматься, как запрограммировать и «вшить» коды безопасности в материалы, чтобы не допустить подобных инцидентов.

Некоторые эксперты утверждают, что структурную уязвимость Интернета можно было предвидеть с самого начала. Проблемы безопасности ПМ аналогичны тем вопросам, которые возникают при рассмотрении кибербезопасности в рамках концепции «Интернета вещей». Такие же соображения стоит высказать относительно еще более насущной угрозы — взлома программируемых объектов, сделанных из ПМ.

Понятие интеллектуальной собственности (ИС) также может стать более сложным, так как продукты, которые способны изменять свою форму и свойства, станут прямым вызовом институту патентных прав. Как 3D-печать, программируемая материя сделает затруднительной идентификацию владельца данного продукта. Но благодаря 4D-печати и ПМ можно делать копии объектов с одинаковыми формами и функциями или активировать самопроизводство изделий.

Картинки по запросу 4d-печать

Юридические последствия в случае отказа какого-либо компонента также относятся к проблемам вчерашнего дня. Кто будет нести ответственность, если компонент из программируемого материала, например, деталь самолетного крыла, вдруг сломается в воздухе? Производитель, программист, разработчик новой конструкции или создатель «интеллектуального» материала?

На наших глазах происходит слом еще одной парадигмы — научной, технологической, экономической, социальной и философской. Как и в случае с другими прорывными технологиями, следует задать главный вопрос: готово ли общество к такому прекрасному и опасному программируемому миру?

Или мы будем наблюдать картину, аналогичную с ситуацией в современном интернете? Только массовую застройку из запрограммированных зданий не закроешь в один момент, как пиратский сайт.

Картинки по запросу 4d-печать

Не меньшую опасность таит и другая сторона этой технологии, о которой скромно умалчивают авторы концепции. Программируемый материальный мир — это возможность абсолютного контроля над жизнью всего населения планеты. Когда микроскопические датчики будут зашиты повсюду — в одежду, мебель, стены, искусственные внутренние органы — не нужна будет полиция или спецслужбы.

С нарушителем законов (стоит задуматься и о том, какие законы будут новом мире) справится его собственное кресло, а печень будет аккуратно слать сигналы в центр обо всех опасных телодвижениях своего владельца. Тотальный контроль над огромными массами населения может сосредоточиться в руках «элиты», которой понадобиться самый минимум обслуживающего персонала.

Фантазировать на эту тему можно еще долго, однако будем надеяться, что подобная антиутопия все же не ждет наших детей и внуков.

Сравнение традиционных технологий с 3D- и 4D-печатью изделий
Преимущества новых технологий 3D-печать 4D-печать
Возможность изготовления изделий самых сложных форм Селективная укладка материала значительно снижает массу изделия путем печати каркасных конструкций. Свобода проектирования формы распространяется также и на внутреннюю структуру материала Абсолютная свобода проектирования. Способность изделия адаптировать свою форму к окружающим условиям как самостоятельно, так и по команде
Снижение стоимости изготовления Для 3D-принтеров нет разницы, какой формы печатать изделия, поэтому резко снижается стоимость и время изготовления После запуска технологического процесса уже не нужны затраты и время на отладку и проверку «впечатываемых» источников питания, проводников и сенсоров, что очень важно при производстве электроники и роботов
Упрощение производственных процессов – минимальное участие человека-оператора Поскольку при 3D-печати изготовление изделий происходит в соответствии со стандартизированной программой, т. е. под управлением компьютера, участие человека сводится к минимуму, как и время на изготовление продукции С использованием 4D-печати степень упрощения производства возрастает еще больше — исключительная простота составных элементов позволяет их быструю печать, а затем активацию тем или иным способом. Более того, составные элементы способны адаптироваться к условиям во время производства и транспортировки к конечному потребителю
Исчезновение из логистики цепочек поставок и сборочных линий Конечный продукт, даже такой сложный, как автомобиль, изготавливается за один этап производственного процесса, поэтому становятся ненужными снабжение запчастями, складирование их, сборка на линиях Ситуация, аналогичная применению 3D-печати
Производство любого числа изделий — от массового до единичного 3D-печать позволит выпускать огромный ассортимент продукции, причем производственные линии можно легко и быстро перенастроить на выпуск другого изделия. Нет необходимости в наращивании запасных частей Ситуация, аналогичная 3D-печати, поскольку все компоненты будут напечатаны
Персонализация изделий Поскольку стоимость производства 3D-печати не зависит от массовости производства, можно довести до максимума персонализацию изделий Универсальность единичных элементов, модифицируемая электронная начинка, реакция изделий на желания пользователя и самостоятельная адаптация к окружающей среде поднимут персонализацию изделий на новую ступень. Вполне возможно непосредственное участие будущего пользователя в производстве
Распространение не изделий, а их проектов в файлах Изделия можно будет распечатать по проектным файлам в любом месте планеты на соответствующем принтере. Более того, их можно будет передавать в любое место с помощью интернета В эпоху 4D можно будет оцифровать весь материальный мир. Достаточно приобрести набор вокселей, загрузить программу из облака, а затем самостоятельно изготовить нужную вещь
Сокращения пропасти между проектировщиком и конечным продуктом приведет к отмиранию старых технических профессий и появлению новых Взаимоотношения между проектировщиком и конечным продуктом такие же, как между программистом и готовой программой Проектировщики теперь рассматривают свою работу как создание многофункциональных динамических объектов, поэтому полное программирование материального мира стимулирует появление нового поколения специалистов — программистов материи. Научное и обучающее моделирование поднимается на новый уровень благодаря созданию полностью функциональных «умных» физических моделей, развитию новых форм исследовательской работы и обучения

Воксель

Понятие «вокселя» (тж. «воксела»), или «объемного пикселя» используется, чтобы определить основную единицу в цифровом пространстве и программируемой материи. Воксели могут быть цифровыми и физическими. Цифровые воксели используются для виртуального представления 3D-модели. Под физическими вокселями могут подразумеваться элементарные объемы однородных материалов или многокомпонентных смесей, наноматериалы, интегральные схемы, биологические материалы и микророботы и многое другое.

Простейший пример 4D-печати: плоская поверхность, которая самостоятельно сворачивается в закрытый кубПростейший пример 4D-печати: плоская поверхность, которая самостоятельно сворачивается в закрытый куб

Палец робота, спроектированный и напечатанный методами аддитивных технологий: виртуальное представление в САПР (системе автоматизированного проектирования), напечатанный палец с встроенным силовым проводником, активированное движение пальца

Палец робота, спроектированный и напечатанный методами аддитивных технологий: виртуальное представление в САПР (системе автоматизированного проектирования), напечатанный палец с встроенным силовым проводником, активированное движение пальца

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!