Миниатюрный детектор спиновых волн из 11 атомов впервые уловил спиновые волны

На иллюстрации: R. J. G. Elbertse, et al. / Nature Communications Physics, 2020. Группа физиков создала миниатюрный детектор спиновых волн, состоящий всего из 11 атомов. Разработанный детектор обладает памятью в несколько секунд, что делает его совместимым с современными методами измерения с помощью новых сканирующих туннельных микроскопов. Работа опубликована в журнале Nature Communications Physics. Работа устройств спинтроники основана на магнонах, или спиновых волнах, которые представляют собой элементарные магнитные возбуждения спинов. К сожалению, контролировать спиновые волны в наноустройствах невероятно сложно. Помимо того, что волны распространяются чрезвычайно быстро, они могут двигаться в противоположных направлениях одновременно благодаря своей квантовой природе. Чтобы управлять спиновыми волнами, необходимо, для начала, научиться наблюдать за их динамикой с высокой точностью. Для измерения магнонов в атомных структурах существуют схемы обнаружения, использующие атомный зонд в сканирующем микроскопе. К сожалению, современные сканирующие микроскопы часто не способны уловить быстрые спиновые волны: для зондирования динамического отклика, который происходит быстрее, чем время измерения микроскопа, необходимо разработать промежуточный детектор с памятью, который сохранит отклик до тех пор, пока он не будет измерен микроскопом.

Читать далее

Предложена новая концепция широкополосного однофотонного детектора в микроволновом диапазоне

Связь между встроенным в волновод нелинейным уникальным метаматериалом и распределенной резонансной модой может обеспечить безусловное детектирование фотонов с ошибкой менее процента. Новую концепцию широкополосного однофотонного детектора в микроволновом диапазоне физики описали в препринте на известном arXiv.org. Однофотонные детекторы — одна из ключевых технологий экспериментальной квантовой оптики. Детектирование фотонов в ультрафиолетовом, видимом и инфракрасном диапазоне частот — вполне устоявшаяся и рутинная технология: приборы производятся многими научными группами и коммерческими компаниями и вполне доступны для приобретения. Как правило, их принцип действия состоит в поглощении фотона чувствительной полупроводниковой матрицей или сверхпроводящей нанопроволокой. Возникающий при этом импульс тока регистрируется электронными приборами, что дает информацию о наличии фотона. Однако, гораздо сложнее дело обстоит с фотонами СВЧ (или микроволнового) диапазона, с частотами примерно от 5 до 20 ГГц. Интерес к обнаружению таких фотонов возникает при изучении квантовых систем, работающих на СВЧ: сверхпроводящих цепей, квантовых точек и спиновых ансамблей.

Читать далее

Нейтринный детектор Супер-Камиоканде позволил обнаружить несохранение CP-симметрии в нейтринных осцилляциях

На фото: Нейтринный детектор Супер-Камиоканде во время работ по усовершенствованию установки. По мере слива воды из бака ученые и инженеры получают доступ к фотоумножителям на разных уровнях. Перемещаться приходится на лодках, а попадают внутрь детектора при помощи лебедки через люк в его крыше. В момент, запечатленный на этой фотографии, уровень воды в детекторе составлял примерно 22 м (при его высоте около 41 м). Фото с сайта www-sk.icrr.u-tokyo.ac.jp. В журнале Nature появилась статья международного коллектива физиков, где представлены результаты многолетних экспериментов с нейтринными пучками, которые проводились в Японии в течение 2009–2018 годов. Анализ данных, собранных коллаборацией Т2К, позволяет предположить, что впервые удалось обнаружить довольно сильное несохранение CP-симметрии (или, как ее еще называют, комбинированной четности) в нейтринных осцилляциях. Подтверждение этого вывода, если таковое будет получено, может открыть путь к лучшему пониманию причин полного доминирования материи над антиматерией в нынешней Вселенной.

Читать далее

Научная концепция энергонезависимого цветоизменяющего датчика влажности воздуха: эксперименты и практическое применение

Умные часы, умные холодильники, умные чайники, умные подгузники (да, такое тоже есть) — в последние годы в мире электроники и не только появилось множество экземпляров устройств, чьи возможности были расширены сверх их первоначального спектра. Как правило, одной из основных черт «умных вещей» является связь с Интернетом, но это далеко не единственный критерий, по которому можно судить об интеллектуальных способностях гаджетов. Сегодня мы с вами познакомимся с исследованием, в котором ученые из Пхоханского университета науки и технологии (Пхохан, Южная Корея) создали цветоизменяющий датчик влажности воздуха, не требующий внешнего источника энергии или специфического источника света. Какими особенностями обладает необычное устройство, как оно создавалось и где его можно будет применять? Ответы на эти вопросы ждут нас в докладе ученых. Поехали. Вначале разберем основу исследования. В основе новой разработки лежит достаточно известная концепция — резонатор Фабри—Перо.

Читать далее

Эффект фотонной струи позволил сфокусировать свет в отраженном пучке

На иллюстрации: Симуляция распространения отраженных от зеркала волн при угле падения 60°. Minin et. al. / Scientific Reports, 2020. Физики создали совершенно плоское диэлектрическое зеркало, которое способно фокусировать свет в отраженном пучке. Его принцип работы основан на эффекте фотонной струи, согласно которому микрочастицы в материале могут выполнять функцию линз, фокусируя излучение в субволновом диапазоне. Результаты работы, опубликованные в журнале Scientific Reports, помогут создать приборы для оптической визуализации с более высоким разрешением изображения. Обычные сферические зеркала преломляют свет благодаря своей изогнутой форме. Лучи света в таких зеркалах проходят различный путь в зависимости от места падения, из-за чего на выходе они теряют параллельность и собираются в фокусе. У плоских зеркал лучи в фокусе не собираются, а сохраняют параллельность на выходе из-за отсутствия искривления поверхности. Отраженные от таких зеркал лучи, шедшие до этого параллельно друг другу, не собираются в одной точке. Не так давно исследователям удалось создать плоские зеркала, которые имеют фокус.

Читать далее

Впервые удалось создать контролируемую квантовую запутанность между охлажденными атомом и молекулой

Иллюстрация: Yiheng Lin, et al. / Nature, 2020. Группа физиков из Китая и США впервые создала контролируемую квантовую запутанность между охлажденными атомом и молекулой. Эксперимент демонстрирует способ создания гибридных микроскопических систем для квантовой обработки информации. Работа опубликована в журнале Nature. Классические вычислительные устройства преобразуют информацию с разных физических носителей для обработки, хранения и передачи данных. Вполне вероятно, что квантовая обработка информация, которая производиться с помощью квантовых компьютеров, будет также использовать разные физических носители в задачах вычислений, симуляций и метрологии. Больше о квантовых компьютерах вы можете прочитать в нашем материале «Квантовая азбука». Основными элементами квантовых компьютеров являются кубиты — микроскопические системы, которыми можно управлять с помощью макроскопических приборов. В качестве кубитов выступают искусственные или настоящие атомы. В разных реализациях квантовых компьютеров частоты кубитов отличаются на порядки, поэтому при использовании разных платформ квантовых вычислений необходимо разработать систему, позволяющую связывать несовместимые по частоте кубиты.

Читать далее

Моделирование помогло найти секрет устойчивости восьмиугольных куполов без поддерживающих приспособлений

Иллюстрация: V. Paris et al. / Engineering Structures, 2020. Итальянские и американские механики объяснили, как итальянским зодчим XVI века удавалось возводить большие восьмиугольные купола без использования новых поддерживающих приспособлений. Смоделировав на компьютере структуру кирпичной кладки таких куполов, ученые показали, что из-за механического сопротивления горизонтальных элементов купол не обваливается во время строительства, а сам поддерживает свою форму. Результаты работы интересны в том числе для развития технологий строительства с использованием роботов, пишут ученые в Engineering Structures. Один из самых впечатляющих образцов архитектуры XV века — восьмисекционный купол собора Санта-Мария-дель-Фьоре во Флоренции. Отличительная особенность построенного Филиппо Брунеллески купола в том, что большую часть купола возводили без подпорок и строительных лесов. Для осуществления проекта архитектор использовал технологию кирпичной кладки «в елочку» — прием, который применяли при строительстве куполов в Древнем Риме.

Читать далее

Открыт новый механизм спонтанного нарушения симметрии физических систем на квантовом уровне

Физики из США, Аргентины и Испании предложили новый механизм спонтанного нарушения симметрии, связанный с измерениями квантового состояния системы. В качестве примера ученые теоретически рассмотрели эволюцию замкнутой одномерной цепочки спинов. Оказалось, что слабые измерения намагниченности цепочки заставляют ее выбрать некоторое вакуумное состояние, нарушающее исходную симметрию системы. Более того, способ измерения определяет топологию многообразия, на котором расположены доступные вакуумные состояния. Статья опубликована в Physical Review Letters, препринт работы выложен на arXiv.org. Спонтанное нарушение симметрии занимает в современной теоретической физике центральную роль. С одной стороны, в статистической физике этот механизм описывает фазовые переходы — например, кристаллизацию жидкости или превращение металла в сверхпроводник.

Читать далее

Гипотеза Конна о вложенности и как она связана с бесконечностью и квантовой механикой: популярно для любознательных

Знаковое доказательство из области информатики заодно решило важную задачу, известную, как гипотеза Конна о вложенности. Теперь математики работают над тем, чтобы понять её. Всегда ли есть способ аппроксимировать бесконечные фотоны в луче света конечным массивом чисел?Представьте, что на Землю прилетели пришельцы и выдали нам правильные ответы на самые важные вопросы: есть ли Бог? Истинна ли гипотеза Римана? Действовал ли Освальд в одиночку? Мы были бы благодарны за информацию, но она принесла бы нам мало пользы, если бы мы не знали, как они получили эти ответы. В такой ситуации сегодня оказались математики. В январе команда специалистов по информатике опубликовала масштабное доказательство, которое называют одним из важнейших результатов этого столетия в данной области. Однако доказательство вышло далеко за пределы информатики. Пройдя по длинной цепочке следствий, оно решило ещё и крупную открытую задачу математики. Математики, изучающие операторную алгебру, к которой имеет отношение описанная задача, похожи на тех землян, которым знание упало на голову.

Читать далее