Создан стабильный при комнатной температуре магнонный кристалл времени с периодической структурой

Иллюстрация: Joachim Grafe et al. / Physical Review Letters, 2021. Физики создали магнонный кристалл, обладающий периодической структурой во времени. Для этого они использовали пластинку из ферромагнитного пермаллоя, помещенную в электромагнитное поле. Это первый временной кристалл микрометрового масштаба, созданный при комнатной температуре. Динамику магнонов в нем удалось заснять на видео с помощью рентгеновского микроскопа. Статья опубликована в журнале Physical Review Letters. Не любое твердое вещество можно назвать кристаллом, эти структуры обладают отличительным свойством — периодичностью. То есть решетка кристалла повторяется через строго определенные расстояния. Такая неоднородность является нарушением пространственной симметрии. В 2012 году физик-теоретик Фрэнк Вильчек предположил, что могут существовать кристаллы, нарушающие симметрию не пространства, а времени. Он представлял себе их как системы, которые пульсируют в состоянии равновесия, периодически возвращаясь в одну и ту же конфигурацию.

Читать далее

Обнаружена асимметрия верхних и нижних антикварков внутри протона

Иллюстрация: J. Dove et al / Nature, 2021. Группа физиков представила результат обработки большого количества данных, полученных в рамках эксперимента SeaQuest по рассеянию пучка протонов на водородных и дейтериевых мишенях. Цель эксперимента — исследование асимметрии в распределении верхних и нижних антикварков внутри протона. В результате физики обнаружили, что нижних антикварков в среднем почти в полтора раза больше, чем верхних. Работа опубликована в Nature. Отличительной чертой сильного взаимодействия — одного из четырех фундаментальных взаимодействий, которое ответственно за формирование протонов, нейтронов и других адронов — считается его общая непертурбативность, то есть такая ситуация, когда попытка построить теорию с помощью разложения в ряд по некоторому малому параметру невозможна. Этим сильное взаимодействие отличаются от, например, электромагнитного, где таким параметром выступает постоянная тонкой структуры. Малость этой константы обеспечивает хорошую сходимость в квантовой электродинамике, что делает эту теорию одной из самых точных в физике.

Читать далее

Обнаружена левитация облучаемого светодиодами медного диска при экстремально низком давлении

На иллюстрации: Левитация облучаемого светодиодами диска при давлении воздуха 30 паскалей. Диаметр диска — около 6 миллиметров, вес в воздухе — около 0,3 микроньютона. Mohsen Azadi et al. / Science Advances, 2021. Ученые изготовили сантиметровые полимерные диски, противоположные поверхности которых по-разному взаимодействуют с налетающими молекулами газа при нагреве со стороны излучения, и пронаблюдали их левитацию в вакуумной камере при давлении порядка 10 паскалей и интенсивности облучения около 0,5 ватт на квадратный сантиметр (того же порядка, что у солнечного света). Результаты опыта и предсказания теоретической модели помогут в создании компактных аппаратов для полетов в мезосфере — например, предназначенных для изучения погодных и климатических явлений. Статья опубликована в журнале Science Advances. На сегодняшний день мезосфера (слой атмосферы на высоте 50–80 километров) — проблемная зона для летательных аппаратов. Воздух на такой высоте уже недостаточно плотный, чтобы надежно удерживать воздушные шары и самолеты, но в то же время слишком плотный, чтобы мешать орбитальному движению космических аппаратов, нагревая и затормаживая последние.

Читать далее

В поисках темной материи ученые расширяют методы ее обнаружения: между электроном и протоном

Физики планируют не пропустить ни одной возможности: не воздействует ли тёмная материя на разные виды детекторов, не изгибает ли свет звёзд, не разогревает ли ядра планет и не откладывается ли в камнях. С тех пор, как в 1980-х согласились с тем, что большая часть массы Вселенной невидима для нас, и что эта «тёмная материя» должна удерживать галактики от разрушения и формировать посредством гравитации облик всего космоса, экспериментаторы охотились за этими несветящимися частицами. Сначала они начали поиски тяжёлой и медленной формы тёмной материи под названием слабовзаимодействующие массивные частицы (weakly interacting massive particle, WIMP) — вимпы. Этот ранний кандидат был одним из самых предпочтительных вариантов, подходящих на роль потерянной космической материи – он мог решить ещё одну, отдельную загадку из физики частиц. Десятилетиями физики строили всё более крупные мишени в виде кристаллов и многотонных резервуаров с экзотическими жидкостями, надеясь уловить редкое мельтешение в атомах, происходящее после столкновения с вимпами.

Читать далее

Загадка жизни во вселенной или что мы знаем о том как зарождается жизнь на экзопланетах

Экзопланета Kepler-452b (справа) по сравнению с Землёй (слева). Изучать планеты, похожие на Землю, имеет смысл. Но может оказаться, что они не будут самыми вероятными кандидатами на обнаружение жизни в нашей Галактике или во Вселенной вообще. Одна из наиболее захватывающей целей из тех, что поставило перед собой человечество – найти внеземную жизнь. Биологическую активность, появившуюся и не прекращающуюся на каком-нибудь мире за пределами Земли. Эту возможность подпитывает не только наше воображение. У нас полно непрямых свидетельств, определяющих другие потенциальные места, где могла бы появиться жизнь. Появиться в результате процессов, похожих на те, что происходили в прошлом Земли. Если сравнить существующие условия с тем, что, по нашему мнению, требуется жизни, предположения становятся осмысленными. Рассуждать о том, сколько вообще может быть «потенциально обитаемых» планет – в Солнечной системе, в Млечном пути, в местной группе галактик, или даже в обозримой Вселенной – занятие интересное. Однако нужно честно описать предположения, используемые для получения этих оценок.

Читать далее

Обнаружена новая фаза льда и его полиморфизм при высоких давлениях

Иллюстрация: Ryo Yamane / Nature Communications, 2021. Японские физики открыли новую фазу воды, существующую при очень высоком давлении, и подтвердили полиморфизм льда. Оказалось, что новая фаза существует внутри уже известной — до сих пор существование таких структур ставилось под сомнение. Ученые применили к уже известному льду-VI давление от 0,88 до 2,20 гигапаскалей. В итоге этот диапазон разделился пополам: в левой половине образуется уже известный лед-XV, а в правой — ранее неизвестный лед-XIX. Самостоятельность новой фазы подтверждается анализом диэлектрической проницаемости и нейтронной дифракции. Статься  опубликована в Nature Communications. На сегодняшний день известно уже более 20 кристаллических и аморфных модификаций водяного льда. Такое разнообразие возникает благодаря гибкости водородных связей. А возникающее из-за них упорядочение атомов водорода в структуре льда сильно влияет на механические и структурные свойства льда. Например, из-за этого блокируется вращение молекул воды, а также возникают сегнетоэлектрические  и антисегнетоэлектрические  структуры.

Читать далее

Метаповрехности из металла для задач фотоники: нанорезонаторы и плазмонные поверхности

Всему свое время и место. Эта поговорка вполне применима и к определенным веществам, элементам и химическим соединениям. Как бы ученым ни хотелось иметь в своем распоряжении «универсального солдата», которого можно было бы использовать и в оптике, и в акустике, и биоинженерии, многие материалы так же хороши в одной отрасли, как плохи в другой. Подобное касается и металлов, которые уже давно считают ужасным материалом для работы в области фотоники, акцентирующей свое внимание на оптических сигналах. Металлы в фотонике это, одним словом, потери, т.е. очень сильное рассеяние электрической энергии. Однако ученым из Оттавского университета (США) решили показать, что металлы не такие уж и бесполезные в фотонике, создав массив из металлических наночастиц, показавший высокую добротность. Какие вещества использовались для создания массива, как он работает, какие конкретно показывает результаты, и как его можно применить на практике? Об этом нам поведает доклад ученых. Поехали. Интерес ученых к металлам в фотонике объясняется рядом уникальных свойств и характеристик.

Читать далее

Фантастический варп-двигатель для перемещения во вселенной: что говорит фундаментальная наука

Варп-двигатель — одна из тех концепций, которые кажутся преждевременно проникшими из фантастики в науку, притягательных и недостижимых. Как известно, варп-двигатель был «изобретен» во вселенной «Стар Трек» и представляет собой устройство, позволяющее космическому кораблю мгновенно перемещаться в пространстве из точки A в точку B, не совершая многолетних и многовековых перелетов на субсветовых скоростях. Этот двигатель работает на антивеществе и кристаллах дилития, поэтому, в сущности, авторы могли нарисовать его сколь угодно мощным, компактным и красивым, не ограничивая собственную фантазию. Для полноты картины приведу здесь его схему, взятую с сайта startreker.su. При всей фантастичности подобного проекта, в нем есть более чем внушительное рациональное зерно. Действительно, согласно теории относительности Эйнштейна, ничто в пространстве не может двигаться быстрее света, но при этом никак не ограничивается скорость движения самого пространственно-временного континуума.

Читать далее

Создано “нанозеркало” с индексом отражения выше 99,9% для новых оптоэлектронных устройств

Фото: VCSEL solutions & photodiodes. Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что такое “нанозеркало” способно улучшить параметры многих компьютерных устройств, где применяется лазерная оптика. Изобретение американцев называется “Контрастная решётка с высоким индексом преломления и шагом, меньше длины волны” (high-index contrast sub-wavelength grating – HCG). Создали её Конни Чан-Хаснейн (Connie J. Chang-Hasnain), директор Центра оптоэлектроники, наноструктур и полупроводниковых технологий Университета Калифорнии в Беркли (CONSRT), и её аспиранты Майкл Хуан (Michael Huang) и Е Чжоу (Ye Zhou). Однако, прежде, чем рассказать о сути, необходимо сделать небольшое отступление. Ранние версии полупроводниковых лазеров использовали в качестве зеркал кристаллы, которые обеспечивали коэффициент отражения в 30%. Это не слишком много, если учесть, что зеркала в лазере обеспечивают многократный пробег фотонов через рабочую среду, где они вызывают генерацию новых фотонов, вся эта лавина накапливается и, в конечном счёте, выходит через одно из зеркал (полупрозрачное) в виде лазерного луча.

Читать далее