Искусственный интеллект в медицине: основные тренды и направления развития

Картинки по запросу искусственный интеллект медицинаИскусственный интеллект в тренде. Он уже рисует картины, водит автомобиль и отвечает на звонки в организациях. Всё шире применяется он и в медицине, причём показывает высокую эффективность. И покажет ещё бо́льшую, если привлечь простых людей к сбору данных и изменить законодательство. Правда, некоторые связанные с его внедрением проблемы в рамках текущей мировой политэкономической ситуации кажутся неразрешимыми. Медицина, ориентировавшаяся ранее, в основном, на лечение острых заболеваний, теперь больше внимания уделяет недугам хроническим, многие из которых не так давно и болезнями не считались. Врачи сталкиваются с необходимостью лечить ожирение, депрессии, болезни пожилого возраста.

Картинки по запросу искусственный интеллект медицина

Диабет, сердечная недостаточность, аутоиммунные расстройства всё чаще диагностируются вне фазы обострения, на самых ранних стадиях, причём речь всё чаще идёт не только о поддерживающей терапии, но о возможности полностью излечить, исправить эти системные сбои организма. Развивается превентивная медицина, позволяющая распознать предрасположенность к определённым типам заболеваний ещё до их проявления и принять меры. Быстро растут объёмы медицинских данных, и мы начинаем понимать, что от скорости и качества их анализа зависят наше здоровье и качество жизни. И что всё это — работа для искусственного интеллекта.

Что такое искусственный интеллект

Здесь под искусственным интеллектом (ИИ) мы будем понимать способность машины имитировать умное поведение людей, то есть — умение ориентироваться в меняющемся контексте и принимать с учётом этих изменений оптимальные, позволяющие достичь цели решения.

Сегодня масштабно используются две технологии ИИ — экспертные системы и нейронные сети. В то время как экспертные системы отживают свой век, нейронные сети (НС) завоевали рынок благодаря способности учиться.

Выделяют несколько видов ИИ:

  1. Узкий ИИ (narrow AI) — спроектирован, чтобы решать определённую задачу;
  2. Общий ИИ (general AI, AGI) — сможет решать любые задачи, с которыми справится человек;
  3. Superintelligence — будет опережать человека по сложности решаемых задач.

В данной статье под ИИ я буду подразумевать «узкий ИИ», реализованный на базе нейронных сетей. Механизм работы последних был вдохновлён биологическими нейронными сетями. В компьютерном виде НС представляют граф с тремя или более слоями нейронов, соединённых в слоях тем или иным образом. У соединений есть веса, играющие важную роль в обучении НС.

Примитивно обучение нейронных сетей можно представить так: на входные нейроны подаются данные, дальше они обрабатываются нейронами на внутреннем слое, и на выходных нейронах получаются некоторые значения. Если полученные значения нас не устраивают, мы меняем веса соединений в нейронной сети и заново её учим (подробнее об этом можно почитать в книге Дэвида Криселя (David Kriesel) A Brief Introduction to Neural Networks). Чем больше релевантных данных подаётся на входные нейроны, тем релевантнее выходит и результат работы сети.

Схема нейронной сети

Что необходимо сделать прямо сейчас?

Тонны медицинских карт пылятся на полках больниц и поликлиник. Между тем, если на их материале обучить нейронные сети, системы искусственного интеллекта многим спасли бы жизни и уменьшили затраты на лечение. Однако открыть сведения об истории болезней — смелый шаг, и многие ему воспротивятся, полагая, что их личные данные могут быть использованы им во вред. Открытие данных должно происходить с соблюдением множества условий и сопровождаться подписанием различного рода соглашений, гарантирующих (возможно, при участии государств) использование строго по назначению. Но, так или иначе, сделать медкарты доступными для нейронных сетей — необходимо: сегодня «тренировочные сеты» информации — узкое место ИИ в медицине.

Современные системы искусственного интеллекта уже помогают врачам лечить пациентов. Например, компания HeartFlow, используя снимки КТ, компьютерное моделирование потоков крови и алгоритмы глубокого обучения, умеет строить 3D-карту сердца. Это дает докторам возможность точнее и быстрее диагностировать сердечные заболевания, снижая число необходимых инвазивных процедур на 80%. Однако ИИ находит применение и в областях, напрямую не связанных с лечением больного, но все равно влияющих на качество медицинского обслуживания. Об этих, в какой-то степени вспомогательных, но по-прежнему важных задачах, мы сегодня и хотим поговорить.


«Внимательный доктор приедет, куда удобно вам»

Маршрутизация в больницах

Системы искусственного интеллекта и машинное обучение могут помочь не только в постановке диагноза. Например, в конце мая Клиника Университетского колледжа Лондона в Блумсбери (UCLH) объявила, что будет использовать системы ИИ для определения пациентов, которым действительно нужна неотложная медицинская помощь.

Когда в приемный покой поступает пациент, жалующийся на боль, медперсонал выполнят стандартные процедуры — берет кровь на анализ, собирает анамнез, при необходимости делает рентген. Как отмечают в поликлинике, в 80% случаев у пациентов нет ничего серьезного — им выписывают лекарства и отпускают домой.

Система искусственного интеллекта позволит быстрее выявлять те самые 20%, которым действительно требуется неотложная помощь. Генеральный директор UCLH в интервью Guardian рассказал, что ПО будет устанавливать пациенту приоритет, оценивая опасность озвученных им симптомов. Например, боль в области живота может означать аппендицит или заболевание почек, поэтому такой человек будет «двигаться» в сторону головы очереди.

Алгоритмы машинного обучения также способны помочь и с маршрутизацией пациентов и докторов. Например, исследователь и консультант-невролог в Национальном госпитале неврологии и нейрохирургии Великобритании Парашкев Начев (Parashkev Nachev) разработал алгоритм машинного обучения, который анализирует информацию о записях на прием в поликлинику и оценивает вероятность того, что пациент по тем или иным причинам пропустит сеанс МРТ-сканирования. Его система учитывает такие параметры, как возраст человека, его адрес и расстояние до клиники, погодные условия. Пока ученому удалось достичь точности в 85%. Это помогает оперативно перераспределять время записи.

А в той же UCLH система искусственного интеллекта, которую разрабатывают ученые из Института им. Алана Тьюринга, будет отслеживать, как доктора и пациенты «перемещаются» по госпиталю — какие задачи выполняют, на какие процедуры ходят. Это поможет определять потенциальные «бутылочные горлышки» в организации работы поликлиники — ситуации или места, где потенциально возможны очереди или дефицит оборудования.

Поиск новых знаний

Практики лечения, которым следуют врачи, имеют свойство устаревать. Появляются новые методологии, новые исследования и препараты. Еще в 2004 году исследователи изучили содержание 341 медицинского журнала и установили, что в сумме количество ежемесячных публикаций превышало 7 тысяч.

В идеале врачу необходимо постоянно поддерживать уровень предметных знаний, быть в курсе современных практик лечения — однако изучать весь корпус публикаций, которые регулярно выходят в тематических журналах, практически невозможно — даже если речь идет об узком специалисте.

Помочь в этой ситуации способны технологии искусственного интеллекта в комбинации с поисковыми системами. Подобное решение разработали ученые из американского исследовательского центра RAND, занимающегося методами анализа стратегических проблем. Они научили систему искать в огромных объемах информации ключевые слова и термины, имеющие отношение к теме запроса.

Во время тестов этой темой были данные о подагре, низкой плотности костных тканей и остеоартрозе коленного сустава. Алгоритм сумел сократить количество актуальных статей, представляющих интерес для докторов, на 67–83%. По словам разработчиков, система пропустила лишь две статьи, которые были бы отобраны людьми, но ни одна из них не содержала критически важной информации. Точность работы алгоритма машинного обучения составила 96%.

Разработка лекарств

Опыт работы фармацевтических компаний показывает, что с момента начала доклинических испытаний до утверждения препарата и лечения пациентов проходит примерно 12 лет. При этом всего 0,1% «препаратов-кандидатов» попадают на клинические тесты. Одобрение получают 20% из них.

Помочь разрешить эту ситуацию и ускорить выход новых лекарств способны системы искусственного интеллекта. Машинное обучение и системы ИИ находят применение на ранних этапах разработки медицинских препаратов.

Пример — решение компании AtomWise из Сан-Франциско. Их система называется AtomNet. Она использует методы глубокого обучения, чтобы спрогнозировать, как поведут себя молекулы и с какой вероятностью они будут образовывать необходимые связи.

Во время обучения разработчики AtomNet «скормили» системе искусственного интеллекта данные о результатах нескольких миллионов уже известных взаимодействий молекул. На основе этих взаимодействий система научилась предсказывать взаимодействия, которые еще не происходили. ПО уже помогло создать препараты для лечения Эболы.

Системы искусственного интеллекта и машинное обучение помогают врачам и ученым работать эффективнее. Доктора освобождаются от рутинных задач, ученым становится проще проводить исследования, а пациенты быстрее получают лечение.

Сегодня разработки на стыке ИИ и медицины становятся все более популярными. Например, Google начали отбирать компании, занимающиеся созданием «медицинских» систем искусственного интеллекта, для участия в программе стартап-акселератора Launchpad Studio. В конце прошлого года к проекту присоединились сразу четыре компании.

Мы в DOC+ тоже занимаемся разработками в этой сфере: развиваем собственную NLP-систему, которая умеет обрабатывать тексты на медицинскую тематику. Она используется в нашем чат-боте — он помогает собрать анамнез, умеет вычленять симптомы заболеваний из жалоб пациента и в структурированном виде передает их доктору.

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!